Researchers Analyze Earthshine for Life in the Universe

crescent Moon and earthshine over ESO's Paranal Observatory

This view shows the thin crescent Moon setting over ESO’s Paranal Observatory in Chile. As well as the bright crescent the rest of the disc of the Moon can be faintly seen. This phenomenon is called earthshine. It is due to sunlight reflecting off the Earth and illuminating the lunar surface. By observing earthshine astronomers can study the properties of light reflected from Earth as if it were an exoplanet and search for signs of life. This picture was taken on 27 October 2011 and also records the planets Mercury and Venus. Credit: ESO/B. Tafreshi/TWAN

By analyzing earthshine and observing the Moon using ESO’s Very Large Telescope, researchers are using Earth as a benchmark for future discoveries of life elsewhere in the Universe.

By observing the Moon using ESO’s Very Large Telescope, astronomers have found evidence of life in the Universe — on Earth. Finding life on our home planet may sound like a trivial observation, but the novel approach of an international team may lead to future discoveries of life elsewhere in the Universe. The work is described in a paper to appear in the 1 March 2012 issue of the journal Nature.

“We used a trick called earthshine observation to look at the Earth as if it were an exoplanet,” says Michael Sterzik (ESO), lead author of the paper.[1] “The Sun shines on the Earth and this light is reflected back to the surface of the Moon. The lunar surface acts as a giant mirror and reflects the Earth’s light back to us — and this is what we have observed with the VLT.”

The astronomers analyze the faint earthshine light to look for indicators, such as certain combinations of gases in the Earth’s atmosphere,[2] that are the telltale signs of organic life. This method establishes the Earth as a benchmark for the future search for life on planets beyond our Solar System.

The fingerprints of life, or biosignatures, are hard to find with conventional methods, but the team has pioneered a new approach that is more sensitive. Rather than just looking at how bright the reflected light is in different colors, they also look at the polarization of the light,[3] an approach called spectropolarimetry. By applying this technique to earthshine observed with the VLT, the biosignatures in the reflected light from Earth show up very strongly.

Co-author of the study Stefano Bagnulo (Armagh Observatory, Northern Ireland, United Kingdom) explains the advantages: “The light from a distant exoplanet is overwhelmed by the glare of the host star, so it’s very difficult to analyze — a bit like trying to study a grain of dust beside a powerful light bulb. But the light reflected by a planet is polarized, while the light from the host star is not. So polarimetric techniques help us to pick out the faint reflected light of an exoplanet from the dazzling starlight.”

Moon shining in reflected light from the Earth

When the Moon appears as a thin crescent in the twilight skies of Earth it is often possible to see that the rest of the disc is also faintly glowing. This phenomenon is called earthshine. It is due to sunlight reflecting off the Earth and illuminating the lunar surface. After reflection from Earth the colors in the light, shown as a rainbow in this picture, are significantly changed. By observing earthshine astronomers can study the properties of light reflected from Earth as if it were an exoplanet and search for signs of life. The reflected light is also strongly polarized and studying the polarization as well as the intensity at different colors allows for much more sensitive tests for the presence of life. Credit: ESO/L. Calçada

The team studied both the color and the degree of polarization of light from the Earth after reflection from the Moon, as if the light was coming from an exoplanet. They managed to deduce that the Earth’s atmosphere is partly cloudy, that part of its surface is covered by oceans and — crucially — that there is vegetation present. They could even detect changes in the cloud cover and amount of vegetation at different times as different parts of the Earth reflected light towards the Moon.

“Finding life outside the Solar System depends on two things: whether this life exists in the first place, and having the technical capability to detect it,” adds co-author Enric Palle (Instituto de Astrofisica de Canarias, Tenerife, Spain). “This work is an important step towards reaching that capability.”

“Spectropolarimetry may ultimately tell us if simple plant life — based on photosynthetic processes — has emerged elsewhere in the Universe,” concludes Sterzik. “But we are certainly not looking for little green men or evidence of intelligent life.”

The next generation of telescopes, such as the E-ELT (the European Extremely Large Telescope), may well be able to bring us the extraordinary news that the Earth is not alone as a bearer of life in the vastness of space.

Notes

  1. Earthshine, sometimes called the old Moon in the new Moon’s arms, can easily be seen with the unaided eye and is spectacular in binoculars. It is best seen when the Moon is a thin crescent, about three days before or after new Moon. As well as the bright crescent the rest of the lunar disc is visible, dimly illuminated by the bright Earth in the lunar sky.
  2. In the Earth’s atmosphere, the main biologically produced gases are oxygen, ozone, methane, and carbon dioxide. But these can all occur naturally in a planet’s atmosphere without the presence of life. What constitutes a biosignature is the simultaneous presence of these gases in quantities that are only compatible with the presence of life. If life were suddenly to disappear and no longer continuously replenish these gases they would react and recombine. Some would quickly disappear and the characteristic biosignatures would disappear with them.
  3. When light is polarized, its component electric and magnetic fields have a specific orientation. In unpolarized light, the orientation of the fields is random and has no preferred direction. The trick used in some 3D cinemas involves polarized light: separate images made with differently polarized light are sent to our left and right eyes by polarizing filters in the glasses. The team measured the polarization using a special mode of the FORS2 instrument on the VLT.

Reference: “Biosignatures as revealed by spectropolarimetry of Earthshine” by Michael F. Sterzik, Stefano Bagnulo and Enric Palle, 29 February 2012, Nature.
DOI: 10.1038/nature10778

The team is composed of Michael F. Sterzik (ESO, Chile), Stefano Bagnulo (Armagh Observatory, Northern Ireland, UK) and Enric Palle (Instituto de Astrofisica de Canarias, Tenerife, Spain).

Be the first to comment on "Researchers Analyze Earthshine for Life in the Universe"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.