Ceramic Nanotubes Engineered As Thermal Antennas With Heat Radiation Control

Ceramic Nanotube Antennas

Researchers have engineered ceramic nanotubes, which act as antennas that use light-matter oscillations to control heat radiation. The design is a step toward a new class of ceramics that work more efficiently at high temperatures. Credit: Purdue University illustration/Xueji Wang

The gas turbines powering aircraft engines rely on ceramic coatings that ensure structural stability at high temperatures. But these coatings don’t control heat radiation, limiting the performance of the engine.

Researchers at Purdue University have engineered ceramic “nanotubes” that behave as thermal antennas, offering control over the spectrum and direction of high-temperature heat radiation.

The work is published in Nano Letters, a journal by the American Chemical Society. An illustration of the ceramic nanotubes will be featured as the journal’s supplementary cover in a forthcoming issue.

“By controlling radiation at these high temperatures, we can increase the lifetime of the coating. The performance of the engine would also increase because it could be kept hotter with more isolation for longer periods of time,” said Zubin Jacob, an associate professor of electrical and computer engineering at Purdue.

The work is part of a larger search in the field for a wide range of materials that can withstand higher temperatures. In 2016, Jacob’s team developed a thermal “metamaterial” – made of tungsten and hafnium oxide – that controls heat radiation with the intention of improving how waste heat is harvested from power plants and factories.

A new class of ceramics would expand on ways to use heat radiation more efficiently.

Jacob’s team, in collaboration with Purdue professors Luna Lu and Tongcang Li, built nanotubes out of an emerging ceramic material called boron nitride, known for its high thermal stability.

These boron nitride nanotubes control radiation through oscillations of light and matter, called polaritons, inside the ceramic material. High temperatures excite the polaritons, which the nanotubes – as antennas – then couple efficiently to outgoing heat radiation.

The antennas could bring the ability to accelerate the radiation, perform enhanced cooling of a system or send information in very specific directions or wavelengths, Jacob said.

The researchers plan to engineer more ceramic materials with polaritonic features for a host of different applications.

“Polaritonic ceramics can be game changing and we want them to be used widely,” Jacob said.

Reference: “High-Temperature Polaritons in Ceramic Nanotube Antennas” by Ryan Starko-Bowes, Xueji Wang, Zhujing Xu, Sandipan Pramanik, Na Lu, Tongcang Li and Zubin Jacob, 3 October 2019, Nano Letters.
DOI: 10.1021/acs.nanolett.9b03059

This research was performed in the Purdue Discovery Park Birck Nanotechnology Center and is supported through Nascent Light-Matter Interactions, a program by the Defense Advanced Research Projects Agency. The program is led by Purdue University’s School of Electrical and Computer Engineering. 

Be the first to comment on "Ceramic Nanotubes Engineered As Thermal Antennas With Heat Radiation Control"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.