Technology

Cheaper Renewable Energy by Fine-Tuning Thermoelectric Materials

Renewable Energy Thermoelectric Materials Concept

Researchers from Queen Mary University of London have developed new thermoelectric materials, which could provide a low-cost option for converting heat energy into electricity.

Materials known as halide perovskites have been proposed as affordable alternatives to existing thermoelectric materials, however, so far research into their suitability for thermoelectric applications has been limited.

In this study, published in Nature Communications, scientists conducted a series of experiments on thin films of the halide perovskite, cesium tin iodide, to test its ability to create electrical current from heat. The researchers found they were able to improve the materials’ thermoelectric properties through a combination of methods, which involved partial oxidation and the introduction of additional elements into the material.

Dr. Oliver Fenwick, lead Royal Society University Research Fellow and Lecturer in Materials Science at Queen Mary University of London, said: “For many years halide perovskites have been suggested as promising thermoelectric materials. But whilst simulations have suggested good thermoelectric properties real experimental data hasn’t met these expectations.

“In this study, we successfully used ‘doping’ techniques, where we intentionally introduce impurities into the material, to tweak and improve the thermoelectric properties of cesium tin iodide, opening up options for its use in thermoelectric applications.”

Thermoelectric materials use temperature differences to generate electrical energy. They have been suggested as a promising sustainable approach to both energy production and recycling, as they can be used to convert waste heat into useful electricity. However, current widely-used thermoelectric materials are costly to produce and process, which has limited the uptake of this greener technology.

Dr. Fenwick, said: “With the heightened global awareness of climate change and realization that a number of renewable energy solutions will be needed to meet our energy demands, thermoelectric generators are now at the center stage in today’s “green technology” debate.

“The thermoelectric materials we currently have are expensive, and some even contain toxic components. One of the largest growth areas for thermoelectric technology is for domestic, commercial or wearable applications, so there’s a need to find cheaper, non-toxic materials that can also operate well at low temperatures, for these applications to be fully realized. Our research suggests the halide perovskites could, with some fine-tuning, fill this void.”

###

Reference: ‘Enhanced control of self-doping in halide perovskites for improved thermoelectric performance’ by Tianjun Liu, Xiaoming Zhao, Jianwei Li, Zilu Liu, Fabiola Liscio, Silvia Milita, Bob C. Schroeder and Oliver Fenwick, 17 December 2019, Nature Communications.
DOI: 10.1038/s41467-019-13773-3

This work was done in collaboration with researchers from University College London and CNR Bologna, Italy.

Share
By
Queen Mary University of London

Recent Posts

What Predicts Parents’ Desire for More Children?

There are no differences in the desire for more children or the ideal family, according…

December 2, 2022

Anti-Aging Medicines Seek To Eliminate “Zombie” Cells – But Could This Be Dangerous?

Senescent Cells Help To Heal Damaged Tissues According to a recent study from the University…

December 2, 2022

A New Dawn for Prosthetics: Engineers Light the Way To Nerve-Operated Prosthetics of the Future

A multidisciplinary UNSW team has discovered a method to transform nerve impulses into light, paving…

December 2, 2022

Lost for Centuries: Scientists Discover Texts From an Ancient Astronomical Catalog

Written over 2000 years ago, the Hipparchus Star Catalogue is the oldest known attempt to…

December 2, 2022

Positive Clinical Results for Alzheimer’s Amyloid-Clearing Drug – Lecanemab Poised for FDA Approval

Positive results from new amyloid-clearing drug represent a starting point for Alzheimer’s treatment, while combination…

December 2, 2022

NASA Artemis I: Orion Returning Home – Successfully Completes Distant Retrograde Departure Burn

On Artemis I Flight Day 16, Orion left its distant lunar orbit and began its…

December 2, 2022