Space

Construction Started on the Biggest Radio Observatory in Earth’s History – Could Uncover Early Signs of Life in the Universe

SKA at Night

Square Kilometer Array sites in Australia and South Africa at Night. Credit: SKAO

Construction of the world’s biggest radio astronomy facility, the Square Kilometer Array Observatory (SKAO), began on December 4. The observatory is a global project 30 years in the making.

With two huge two telescopes, one (low-frequency) in Australia and the other (mid-frequency) in South Africa, the project will see further into the history of the Universe than ever before.

Astronomers like me will use the Square Kilometer Array (SKA) telescopes to trace hydrogen over cosmic time and make precise measurements of gravity in extreme environments. What’s more, we hope to uncover the existence of complex molecules in planet-forming clouds around distant stars, which could be the early signs of life elsewhere in the Universe.

I have been involved in the SKA and its precursor telescopes for the past ten years, and as the chief operations scientist of the Australian telescope since July. I am helping to build the team of scientists, engineers, and technicians who will construct and operate the telescope, along with undertaking science to map primordial hydrogen in the infant universe.


Construction on the Australian component of the world’s largest radio telescope observatory, the SKA-Low telescope, is starting in Wajarri Yamaji Country in remote Western Australia. The SKA telescopes will be made up of more than 131,000 antennas in Australia and almost 200 dishes in South Africa, will provide an unparalleled view of the Universe, and be one of the biggest science facilities on Earth.

What is the SKA Observatory?

The SKA Observatory is an intergovernmental organization with dozens of countries involved. The observatory is much more than the two physical telescopes, with headquarters in the UK and collaborators around the world harnessing advanced computers and software to tailor the telescope signals to the precise science being undertaken.

The telescope in South Africa (called SKA-Mid) will use 197 radio dishes to observe middle-frequency radio waves from 350 MHz to more than 15 GHz. It will study the extreme environments of neutron stars, organic molecules around newly forming planets, and the structure of the Universe on the largest scales.

The Australian telescope (SKA-Low), in Western Australia, will observe lower frequencies with 512 stations of radio antennas spread out over a 74-kilometer (46-mile) span of the outback.

The site is located within Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory. This name, which means “sharing sky and stars,” was given to the observatory by the Wajarri Yamaji, the traditional owners and native title holders of the observatory site.

Artist’s impression of some of the SKA-Low antenna stations. Credit: DISR

Tuning in to the Universe

After decades of planning, developing precursor telescopes, and testing, a ceremony to mark the start of on-site construction was held on December 4. We expect both telescopes will be fully operational late this decade.

Each of the 512 stations of SKA-Low is made up of 256 wide-band dipole antennas, spread over a diameter of 35 meters (115 feet). The signals from these Christmas-tree-shaped antennas in each station are electronically combined to point to different parts of the sky, forming a single view.

These antennas are designed to tune in to low radio frequencies of 50 to 350 MHz. At these frequencies, the radio waves are very long – comparable to the height of a person – which means more familiar-looking dishes are an inefficient way to catch them. Instead, the dipole antennas operate much like TV antennas, with the radio waves from the Universe exciting electrons within their metal arms.

Collectively, the 131,072 dipoles in the completed array will provide the deepest and widest view of the Universe to date.

SKA sites in Australia and South Africa. Credit: SKAO

Peering into the cosmic dawn

They will allow us to see out and back to the very beginning of the Universe, when the first stars and galaxies formed.

This key period, more than 13 billion years in our past, is termed the “cosmic dawn:” when stars and galaxies began to form, lighting up the cosmos for the first time.

The cosmic dawn marks the end of the cosmic dark ages, a period after the Big Bang when the Universe had cooled down through expansion. All that remained was the ubiquitous background glow of the early Universe light, and a cosmos filled with dark matter and neutral atoms of hydrogen and helium.

The light from the first stars transformed the Universe, tearing apart the electrons and protons in neutral hydrogen atoms. The Universe went from dark and neutral to bright and ionized.

The SKA Observatory will map this fog of neutral hydrogen at low radio frequencies, which will allow scientists to explore the births and deaths of the earliest stars and galaxies. Exploration of this key period is the final missing piece in our understanding of the life story of the Universe.

An artist’s impression of a station of radio antennas. Each station has 256 antennas, and the SKA-Low telescope will have 512 stations. Credit: DISR

Unimagined mysteries

Closer to home, the low-frequency telescope will time the revolutions of pulsars. These rapidly spinning neutron stars, which fire out sweeping beams of radiation like lighthouses, are the Universe’s ultra-precise clocks.

Changes to the ticking of these clocks can indicate the passage of gravitational waves through the Universe, allowing us to map these deformations of spacetime with radio waves.

It will also help us to understand the Sun, our own star, and the space environment that we on Earth live within.

These are the things we expect to find with the SKA Observatory. But the unexpected discoveries will most likely be the most exciting. With an observatory of this size and power, we are bound to uncover as-yet-unimagined mysteries of the Universe.

Written by Cathryn Trott, Research Fellow in Radio Astronomy, SKA-Low Chief Operations Scientist, Curtin University.

This article was first published in The Conversation.

Share

View Comments

  • wow to just think when i was a kidd they never had tv until i was about 9 years old now look at it

  • "... the project will see farther into the history of the Universe than ever before" and further our understanding of the Cosmic Dawn.

    • "I have been involved in the SKA and its precursor telescopes for the past ten years, and as the chief operations scientist of the Australian telescope since July."
      You might want to consider adding a press release editor to the staff you are hiring.

By
Cathryn Trott, Curtin University

Recent Posts

New Study Alarms: Ultra-Processed Foods Linked to Increased Risk of Cancer & Death

Higher consumption of ultra-processed foods may be linked to an increased risk of developing and…

February 5, 2023

Rare Fossilized Feathers Reveal Secrets of Ancient Paleontology Hotspot

The early Cretaceous bird fossils hold key information about the ancient ecosystem of Jehol Biota.…

February 5, 2023

Unprecedented Precision – New DNA Sequencing Method Lifts “Veil” From Genome Black Box

Many life-saving medications interact directly with DNA to treat illnesses like cancer, but scientists have…

February 5, 2023

Overcoming Children’s Peanut Allergies: Boiled Peanuts Show Promise

According to the results of a clinical trial at Flinders University and SAHMRI, boiling peanuts…

February 5, 2023

Unlocking the Secrets of Cellular Uptake: Revolutionary Discovery Paves Way for New Cancer and Disease Treatments

Revolutionary bitopic inhibitors pave the way for innovative disease treatment strategies. The development of drugs…

February 5, 2023

NASA’s Interstellar Mapping and Acceleration Probe Completes Critical Design Review

NASA’s Interstellar Mapping and Acceleration Probe (IMAP) mission held a critical design review (CDR) last…

February 5, 2023