Einstein’s General Theory of Relativity: Contorting Giants

Galaxy LRG-3-817

The galaxy LRG-3-817, also referred to as SDSS J090122.37+181432.3, is seen in the image distorted by gravitational lensing effects. It forms a lengthy arc on the left side of the central galaxy cluster. Credit: ESA/Hubble & NASA, S. Allam et al.

This NASA/ESA Hubble Space Telescope image features the galaxy LRG-3-817, also known as SDSS J090122.37+181432.3. The galaxy, its image distorted by the effects of gravitational lensing, appears as a long arc to the left of the central galaxy cluster.

Gravitational lensing occurs when a large distribution of matter, such as a galaxy cluster, sits between Earth and a distant light source. As space is warped by massive objects, the light from the distant object bends as it travels to us and we see a distorted image of it. This effect was first predicted by Einstein’s general theory of relativity.

Strong gravitational lenses provide an opportunity for studying properties of distant galaxies, since Hubble can resolve details within the multiple arcs that are one of the main results of gravitational lensing. An important consequence of lensing distortion is magnification, allowing us to observe objects that would otherwise be too far away and too faint to be seen. Hubble makes use of this magnification effect to study objects beyond the sensitivity of its 2.4-meter-diameter (7.9-feet-diameter) primary mirror, showing us the most distant galaxies humanity has ever encountered.

This lensed galaxy was found as part of the Sloan Bright Arcs Survey, which discovered some of the brightest gravitationally lensed[1] high-redshift[2] galaxies in the night sky.

  1. A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.
  2. In physics, redshift is a phenomenon where electromagnetic radiation (such as light) from an object undergoes an increase in wavelength. Whether or not the radiation is visible, “redshift” means an increase in wavelength, equivalent to a decrease in wave frequency and photon energy, in accordance with, respectively, the wave and quantum theories of light.

Be the first to comment on "Einstein’s General Theory of Relativity: Contorting Giants"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.