First Quantum Phase “Supercurrent” Battery Ever Developed

Quantum Phase Battery Concept

The first quantum phase battery, consisting of an indium arsenide (InAs) nanowire in contact with aluminum superconducting leads. Credit: Design by Andrea Iorio

The first quantum phase battery has been realized. It consist of an indium arsenide (InAs) nanowire in contact with aluminum superconducting leads and is a key element for quantum technologies based on phase coherence.

Batteries belong to everyday life. A classical battery, the Volta´s pile, converts chemical energy into a voltage, which can power electronic circuits. In many quantum technologies, circuits or devices are based on superconducting materials. In such materials, currents may flow without the need of an applied voltage; therefore, there is no need for a classical battery in such a system. These currents are called supercurrents because they do not exhibit any energy losses. They are induced not from a voltage but from a phase difference of the wave function of the quantum circuit, which is directly related to the wave nature of matter. Such that a quantum device able to provide a persistent phase difference can be seen as a quantum phase battery, which induces supercurrents in a quantum circuit.

In this work, the authors present the results from a theoretical and experimental collaboration that has led to the fabrication of the first quantum phase battery. The idea was first conceived in 2015, by Sebastian Bergeret from the Mesoscopic physics group at the Materials Physics Center (CFM, CSIC-UPV/EHU), a joint initiative of Consejo Superior de Investigaciones científicas (CSIC) and the University of the Basque Country (UPV/EHU), and Ilya Tokatly, Ikerbasque Professor in the Nano-Biospectroscopy group of the UPV/EHU, both Donostia international Physics Center (DIPC) associate researchers. They proposed a theoretical system with the properties needed to build the phase battery. It consists of a combination of superconducting, and magnetic materials with an intrinsic relativistic effect, called spin-orbit coupling.

A few years later Francesco Giazotto and Elia Strambini from the NEST-CNR Institute, Pisa, identified a suitable material combination and fabricated the first quantum phase battery which results are now published in the prestigious journal Nature Nanotechnology. It consists of an n-doped InAs nanowire forming the core of the battery (the pile) and Al superconducting leads as poles. The battery is charged by applying an external magnetic field, which then can be switched off.

Cristina Sanz-Fernández and Claudio Guarcello also from CFM adapted the theory to simulate the experimental findings.

The future of this battery is further being improved at CFM premises in a collaboration between the Nanophysics Lab and the Mesoscopic Physics Group. This work contributes to the enormous advances being made in quantum technology that are expected to revolutionize both computing and sensing techniques, as well as medicine, and telecommunications in the near future.

Reference: “A Josephson phase battery” by Elia Strambini, Andrea Iorio, Ofelia Durante, Roberta Citro, Cristina Sanz-Fernández, Claudio Guarcello, Ilya V. Tokatly, Alessandro Braggio, Mirko Rocci, Nadia Ligato, Valentina Zannier, Lucia Sorba, F. Sebastián Bergeret and Francesco Giazotto, 15 June 2020, Nature Nanotechnology.
DOI: 10.1038/s41565-020-0712-7

2 Comments on "First Quantum Phase “Supercurrent” Battery Ever Developed"

  1. A battery that doesn’t wear out – can you say “dual use?” Battery technology has lagged, causing a bottleneck in applied technology. I always wondered if that was because of monopolistic market behavior. It is difficult to guess what might interfere with this so-called quantum battery technology from emerging. My guess is that this type of high technology might be stifled due to our lack of population control – “freedom” means limiting access to dual use technology.

  2. This idea predates 2015 by quite a bit. Ray Kurzweil wrote of the theoretical ability to store energy as data and vice-versa in his 2005 book, “The Singularity is Near.” It was not a new idea even then.

    Moving from the realm of theoretical physics to physical implementation is, however, a momentous step. “Quantum Batteries” could in theory hold hundreds, thousands, or even millions of times more energy than chemical batteries. While this achievement may not appear to be overly impressive, neither was the first Photo Voltaic cell. Both are however tremendous milestones in science

Leave a comment

Email address is optional. If provided, your email will not be published or shared.