Five Technologies Needed to Survive Deep Space Exploration

Top Five Technologies Needed to Survive Deep Space

Artist rendering of NASA’s Orion spacecraft as it travels 40,000 miles (64,000 kilometers) past the Moon during Exploration Mission-1, its first integrated flight with the Space Launch System rocket.

When a spacecraft built for humans ventures into deep space, it requires an array of features to keep it and the crew inside safe. Both distance and duration demand that spacecraft must have systems that can reliably operate far from home, be capable of keeping astronauts alive in case of emergencies and still be light enough that a rocket can launch it.

Missions near the Moon will start when NASA’s Orion spacecraft leaves Earth atop the world’s most powerful rocket, NASA’s Space Launch System. After launch from the agency’s Kennedy Space Center in Florida, Orion will travel beyond the Moon to a distance more than 1,000 times farther than where the International Space Station flies in low-Earth orbit, and farther than any spacecraft built for humans has ever ventured. To accomplish this feat, Orion has built-in technologies that enable the crew and spacecraft to explore far into the solar system.

Systems to Live and Breathe

As humans travel farther from Earth for longer missions, the systems that keep them alive must be highly reliable while taking up minimal mass and volume. Orion will be equipped with advanced environmental control and life support systems designed for the demands of a deep space mission. A high-tech system already being tested aboard the space station will remove carbon dioxide (CO2) and humidity from inside Orion. Removal of CO2 and humidity is important to ensure air remains safe for the crew breathing. And water condensation on the vehicle hardware is controlled to prevent water intrusion into sensitive equipment or corrosion on the primary pressure structure.

The system also saves volume inside the spacecraft. Without such technology, Orion would have to carry many chemical canisters that would otherwise take up the space of 127 basketballs (or 32 cubic feet) inside the spacecraft—about 10 percent of the crew’s livable area. Orion will also have a new compact toilet, smaller than the one on the space station. Long duration missions far from Earth drive engineers to design compact systems not only to maximize available space for crew comfort, but also to accommodate the volume needed to carry consumables like enough food and water for the entirety of a mission lasting days or weeks.

Highly reliable systems are critically important when the distant crew will not have the benefit of frequent resupply shipments to bring spare parts from Earth, like those to the space station. Even small systems have to function reliably to support life in space, from a working toilet to an automated fire suppression system or exercise equipment that helps astronauts stay in shape to counteract the zero-gravity environment in space that can cause muscle and bone atrophy. Distance from home also demands that Orion have spacesuits capable of keeping astronauts alive for six days in the event of cabin depressurization to support a long trip home.

Proper Propulsion

The farther into space a vehicle ventures, the more capable its propulsion systems need to be to maintain its course on the journey with precision and ensure its crew can get home.

Orion has a highly capable service module that serves as the powerhouse for the spacecraft, providing propulsion capabilities that enable Orion to go around the Moon and back on its exploration missions. The service module has 33 engines of various sizes. The main engine will provide major in-space maneuvering capabilities throughout the mission, including inserting Orion into lunar orbit and also firing powerfully enough to get out of the Moon’s orbit to return to Earth. The other 32 engines are used to steer and control Orion on orbit.

In part due to its propulsion capabilities, including tanks that can hold nearly 2,000 gallons of propellant and a backup for the main engine in the event of a failure, Orion’s service module is equipped to handle the rigors of travel for missions that are both far and long, and has the ability to bring the crew home in a variety of emergency situations.

The Ability to Hold Off the Heat

Going to the Moon is no easy task, and it’s only half the journey. The farther a spacecraft travels in space, the more heat it will generate as it returns to Earth. Getting back safely requires technologies that can help a spacecraft endure speeds 30 times the speed of sound and heat twice as hot as molten lava or half as hot as the sun.

When Orion returns from the Moon, it will be traveling nearly 25,000 mph (40,000 kph), a speed that could cover the distance from Los Angeles to New York City in six minutes. Its advanced heat shield, made with a material called AVCOAT, is designed to wear away as it heats up. Orion’s heat shield is the largest of its kind ever built and will help the spacecraft withstand temperatures around 5,000 degrees Fahrenheit during reentry through Earth’s atmosphere.

Before reentry, Orion also will endure a 700-degree temperature range from about minus 150 to 550 degrees Fahrenheit (minus 100 to 290 degrees Celsius). Orion’s highly capable thermal protection system, paired with thermal controls, will protect Orion during periods of direct sunlight and pitch-black darkness while its crews will comfortably enjoy a safe and stable interior temperature of about 77 degrees Fahrenheit (25 degrees Celsius).

Radiation Protection

As a spacecraft travels on missions beyond the protection of Earth’s magnetic field, it will be exposed to a harsher radiation environment than in low-Earth orbit with greater amounts of radiation from charged particles and solar storms that can cause disruptions to critical computers, avionics, and other equipment. Humans exposed to large amounts of radiation can experience both acute and chronic health problems ranging from near-term radiation sickness to the potential of developing cancer in the long term.

Orion was designed from the start with built-in system-level features to ensure the reliability of essential elements of the spacecraft during potential radiation events. For example, Orion is equipped with four identical computers that each are self-checking, plus an entirely different backup computer, to ensure Orion can still send commands in the event of a disruption. Engineers have tested parts and systems to a high standard to ensure that all critical systems remain operable even under extreme circumstances.

Orion also has a makeshift storm shelter below the main deck of the crew module. In the event of a solar radiation event, NASA has developed plans for the crew on board to create a temporary shelter inside using materials on board. A variety of radiation sensors will also be on the spacecraft to help scientists better understand the radiation environment far away from Earth. One investigation called AstroRad, will fly on Exploration Mission-1 and test an experimental vest that has the potential to help shield vital organs and decrease exposure from solar particle events.

Constant Communication and Navigation

Spacecraft venturing far from home go beyond the Global Positioning System (GPS) in space and above communication satellites in Earth orbit. To talk with mission control in Houston, Orion’s communication and navigation systems will switch from NASA’s Tracking and Data Relay Satellites (TDRS) system used by the International Space Station, and communicate through the Deep Space Network.

Orion is also equipped with backup communication and navigation systems to help the spacecraft stay in contact with the ground and orient itself if its primary systems fail. The backup navigation system, a relatively new technology called optical navigation, uses a camera to take pictures of the Earth, Moon, and stars and autonomously triangulate Orion’s position from the photos. Its backup emergency communications system doesn’t use the primary system or antennae for high-rate data transfer.

7 Comments on "Five Technologies Needed to Survive Deep Space Exploration"

  1. This is just a press release. You know that, right?

  2. Ultimately and possibly sooner than later, humans will have to learn how to live in space or cease to exist. Lefties are Luddites on the matter as they obsess over getting and keeping control over the masses. A large asteroid on a hyperbolic orbit could wipe out humanity tomorrow and we have virtually no backup plans.

    • Ultimately, we all die. Whether by getting run over by a truck, illness, or old age. There are numerous other causes which could bring about the demise of our species. Your comment lost its integrity with me with your obvious bias language of “Lefties”. You can rage now that I must be one of those kinds, or I don’t understand the dynamics of the culture, and you may or may not be right.

      I will say this, as a 58 yo male who voluntarily entered the military for 5 years of service to this country; Maybe, I was stationed with you at Bragg, Fort Knox or in West Germany. Or maybe not. I find your brand of language not only ineffective in facilitating communication but harassing and provocative. If we want to make the most of our days left on this physical earth, I suggest we learn to live together without name calling and blaming other groups. Others were socialized to believe something different than we were or have experiences that we fail to comprehend, and we need to make an effort to understand.

      We can be working on space travel during this time. But, if you ask me, the physics that will take us into other galaxies isn’t yet understood enough for us to make conventional use of it. But, that is a much longer story…

  3. Stephen Kronstein | August 4, 2018 at 1:55 am | Reply

    humans with stem cell advancements enter the age of forever, and now more than ever need to figure out how to hitchhike off this overpopulating planet into the solar system on an orbital object like a comet or an asteroid, build a transient space station on it, ride its orbit back to the asteroid belt at a 100,000 mph, robotech to whatever resources rich rock we find when we get there, mine, replicate the space station, repeat throughout the asteroid belt and galaxy and beyond, hoping asteroids like galactic spaceships. Nature powered.

  4. Deep space cosmic radiation = game over. Period.

    The so-called ‘state-of-the-art’ radiation shielding technology described here, is pathetically inadequate.

  5. Couldn’t you create magnetic fields that protect the astronauts from deep space radiation?

  6. From the article:
    “In the event of a solar radiation event, NASA has developed plans for crew on board to create a temporary shelter inside using materials on board.”
    and,
    “…test an experimental vest that has the potential to help shield vital organs and decrease exposure from solar particle events.”

    (ie, They are not even close to having a system to sustain life in deep space. Gamma and Beta radiation is accumulative in the body.)

    Their solution is to wear just a ‘vest’ for the protection of ‘vital organs’? What about shielding the rest of the body as well?

    Our SKIN is a vital organ, from head to toe. And of course every part of our body is connected, and vitally important to be shielded from gamma radiation, not just the so-called ‘vital’ parts of the body?? What kind of ridiculousness is this for designing a life-supporting spacecraft?

    It is because they have to economize in these missions to get the funding passed, and to shield the entire crew quarters properly, is exorbitantly off-the-scale expensive.

    Contrary to the Musk jargon to colonize Mars, you wouldn’t even make it there w/o 1st experiencing much pain and suffering (and possibly death enroute). NASA’s latest cosmic ray shielding tech is still inadequate for sustainably protecting living tissue from deep space ‘nano-wrecking balls’.

    Someone please tell me, in all of the trips to Mars and the Moon, why hasn’t there been a steady stream of living things sent to test yet? We are most certainly sending probe after probe, to test for the presence of life, but have yet to do the ACTUAL definitive deep-space test of sending even a single celled living organism, like bluegreen algae?

    And why hasn’t that yet happened? Because it would pop their ‘Conquest of Space’ cash cow bubble, that is presently being milked for all it’s worth. Then people would have to step away from the sci fi channel, and get re-educated about the real laws of physics.

    Okay, say that you did survive the trip to Mars. You’d be living in an underground cave inside of a human habi-trail existence, only to die a painful, cancerous death, due to the accumulative exposure to deep space gamma radiation, and living in a micro-gravity environment. The end.

    I have a better idea. Let’s instead use all of the wasted 100’s of billions of $$ that will be spent trying to get humans to Mars, an put it towards planting some damn trees, and cleaning up the trashed environment, starting with the rocket launch sites, from the DECADES of highly toxic rocket exhaust soot, from 100’s of TONS of perchlorate, hydrochloric acid, aluminum chlorhydrate, etc, spewed-out in plumes, with each and every launch, -into our fragile ecosystem and ATMOSPHERIC ENVELOPE that ALL life depends upon for survival??

    What if humans stopped thinking that it was okay to exploit the world around them?

    For one thing, there’d be no space missions to Mars, or anywhere else for a long, long time. That is for damn sure. There is way too much industrial pollution of toxic heavy metals being spewed into the Stratosphere, with no forethought to the repercussions from DECADES of a steady stream of Earth to space rockets. Each leaving behind 100’s of tons of rocket soot! wtf? Musk can take his Mars mcmansions, and shove them up his exploitative, entitled, greed-induced, delusion hole.

    Blockchain cellphone voting, where you register and change parties the same day that you vote, right on your phone. The Trojan Horse hiding in your pocket. All this corrupt ceo dictator capitalist, environmental genocidal bulls#!t, will finally come to a screeching halt.

    Look up https://votem.com/blockchain-voting/ It’s the one possible way out of this Disney/Nazi-spawned rocketing insanity, fed to us in life-changing cartoon movies, when we were just kids.

Leave a Reply to Darin Selby Cancel reply

Email address is optional. If provided, your email will not be published or shared.