Technology

Laser Mini-Magnets Could Enable 100x Boost to Cloud Data Speeds

Magnetic Molecule

Model of a single-molecule magnet. Credit: Dr. Olof Johansson

Tiny, laser-activated magnets could enable cloud computing systems to process data up to 100 times faster than current technologies, a study suggests.

Chemists have studied a new magnetic material that could boost the storage capacity and processing speed of hard drives used in cloud-based servers.

This could enable people using cloud data systems to load large files in seconds instead of minutes, researchers say.

A team led by scientists from the University of Edinburgh created the material — known as a single-molecule magnet — in the lab.

They discovered that a chemical bond that gives the compound its magnetic properties can be controlled by shining rapid pulses from a laser on it. The compound is composed mainly of the element manganese, which is named after the Latin word magnes, which means magnet.

Their findings suggest that data could be stored and accessed on the magnets using laser pulses lasting one millionth of a billionth of a second. They estimate this could enable hard drives fitted with the magnets to process data up to 100 times faster than current technologies.

The development could also improve the energy efficiency of cloud computing systems, the team says, which collectively emit as much carbon as the aviation industry.

Existing hard drives store data using a magnetic field generated by passing an electric current through a wire, which generates a lot of heat, researchers say. Replacing this with a laser-activated mechanism would be more energy-efficient as it does not produce heat.

Dr. Olof Johansson, of the University of Edinburgh’s School of Chemistry, who led the study, said: “There is an ever-increasing need to develop new ways of improving data storage devices. Our findings could increase the capacity and energy efficiency of hard drives used in cloud-based storage servers, which require tremendous amounts of power to operate and keep cool. This work could help scientists develop the next generation of data storage devices.”

Reference: “Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation” by Florian Liedy, Julien Eng, Robbie McNab, Ross Inglis, Thomas J. Penfold, Euan K. Brechin and J. Olof Johansson, 2 March 2020, Nature Chemistry.
DOI: 10.1038/s41557-020-0431-6

The study, published on March 2 in the journal Nature Chemistry, also involved researchers from Newcastle University. It was funded by the Royal Society of Edinburgh, the Carnegie Trust and the Engineering and Physical Sciences Research Council.

Share
By
University of Edinburgh

Recent Posts

Never-Before-Seen Molecule: Webb Reveals a “Hot Saturn” Exoplanet Atmosphere

New Webb Space Telescope observations of WASP-39 b reveal a never-before-seen molecule in the atmosphere…

December 2, 2022

What Predicts Parents’ Desire for More Children?

There are no differences in the desire for more children or the ideal family, according…

December 2, 2022

Anti-Aging Medicines Seek To Eliminate “Zombie” Cells – But Could This Be Dangerous?

Senescent Cells Help To Heal Damaged Tissues According to a recent study from the University…

December 2, 2022

A New Dawn for Prosthetics: Engineers Light the Way To Nerve-Operated Prosthetics of the Future

A multidisciplinary UNSW team has discovered a method to transform nerve impulses into light, paving…

December 2, 2022

Lost for Centuries: Scientists Discover Texts From an Ancient Astronomical Catalog

Written over 2000 years ago, the Hipparchus Star Catalogue is the oldest known attempt to…

December 2, 2022

Positive Clinical Results for Alzheimer’s Amyloid-Clearing Drug – Lecanemab Poised for FDA Approval

Positive results from new amyloid-clearing drug represent a starting point for Alzheimer’s treatment, while combination…

December 2, 2022