Categories: Space

Measuring the Universe’s Rate of Expansion with Black Holes

Measuring the Universes Rate of Expansion Using Black Holes

By using certain types of active black holes that lie at the center of many galaxies, researchers have developed a method with the potential to measure distances of billions of light years with a high degree of accuracy.

Radiation emitted in the vicinity of black holes could be used to measure distances of billions of light years, says TAU researcher.

A few years ago, researchers revealed that the universe is expanding at a much faster rate than originally believed — a discovery that earned a Nobel Prize in 2011. But measuring the rate of this acceleration over large distances is still challenging and problematic, says Prof. Hagai Netzer of Tel Aviv University’s School of Physics and Astronomy.

Now, Professor Netzer, along with Jian-Min Wang, Pu Du and Chen Hu of the Institute of High Energy Physics of the Chinese Academy of Sciences and Dr. David Valls-Gabaud of the Observatoire de Paris, has developed a method with the potential to measure distances of billions of light years with a high degree of accuracy. The method uses certain types of active black holes that lie at the center of many galaxies. The ability to measure very long distances translates into seeing further into the past of the universe — and being able to estimate its rate of expansion at a very young age.

Published in the journal Physical Review Letters, this system of measurement takes into account the radiation emitted from the material that surrounds black holes before it is absorbed. As material is drawn into a black hole, it heats up and emits a huge amount of radiation, up to a thousand times the energy produced by a large galaxy containing 100 billion stars. For this reason, it can be seen from very far distances, explains Professor Netzer.

Solving for unknown distances

Using radiation to measure distances is a general method in astronomy, but until now black holes have never been used to help measure these distances. By adding together measurements of the amount of energy being emitted from the vicinity of the black hole to the amount of radiation which reaches Earth, it’s possible to infer the distance to the black hole itself and the time in the history of the universe when the energy was emitted.

Getting an accurate estimate of the radiation being emitted depends on the properties of the black hole. For the specific type of black holes targeted in this work, the amount of radiation emitted as the object draws matter into itself is actually proportional to its mass, say the researchers. Therefore, long-established methods to measure this mass can be used to estimate the amount of radiation involved.

The viability of this theory was proved by using the known properties of black holes in our own astronomical vicinity, “only” several hundred million light years away. Professor Netzer believes that his system will add to the astronomer’s tool kit for measuring distances much farther away, complimenting the existing method which uses the exploding stars called supernovae.

Illuminating “Dark Energy”

According to Professor Netzer, the ability to measure far-off distances has the potential to unravel some of the greatest mysteries of the universe, which is approximately 14 billion years old. “When we are looking into a distance of billions of light years, we are looking that far into the past,” he explains. “The light that I see today was first produced when the universe was much younger.”

One such mystery is the nature of what astronomers call “dark energy,” the most significant source of energy in the present day universe. This energy, which is manifested as some kind of “anti-gravity,” is believed to contribute towards the accelerated expansion of the universe by pushing outwards. The ultimate goal is to understand dark energy on physical grounds, answering questions such as whether this energy has been consistent throughout time and if it is likely to change in the future.

Publication: Jian-Min Wang, et al., “Super-Eddington Accreting Massive Black Holes as Long-Lived Cosmological Standards,” Phys. Rev. Lett. 110, 081301 (2013): DOI:10.1103/PhysRevLett.110.081301

PDF Copy of the Study: Super-Eddington accreting massive black holes as long-lived cosmological standards

Image: American Friends, Tel Aviv University


View Comments

  • I have maintained throughout my time of deposits within the, Space.Com pages that it is my view; not only is the current concept of, 'Black Holes in error but, the reason for the particles emitted from the centres of galaxies too.

    The 'Black' areas viewed within Space/Time are, according to the evidence as I have interpreted it, nothing more than, 'Void Energy'.(Black because it consists 'extremely long strands of Void Energy (Electromagnetic Energy).)

    The reason why galaxies emit massive amounts radiation is confirmation that my theories on the creation of or universe are correct.. (In situ before the BANG. And the excess energy is now being emitted in the form of radiation.)

American Friends, Tel Aviv University

Recent Posts

Feeling Depressed? Scientists Have Found That Performing Acts of Kindness May Help

Helping others can reduce your focus on your own symptoms, according to a study. New…

February 1, 2023

A One-in-Ten-Billion Binary Star System – First Kilonova Progenitor System Identified

Astronomers using the SMARTS 1.5-meter Telescope uncover a one-in-ten-billion binary star system. Astronomers using the…

February 1, 2023

Brunt Ice Shelf Breaks in Antarctica – Spawns Mega Iceberg 12x the Size of San Francisco

Satellite imagery confirms a gigantic iceberg, around five times the size of Malta, has finally…

February 1, 2023

Could a Nuclear Thermal Rocket Engine Power a Trip to Mars? NASA and DARPA Are Testing

NASA and the Defense Advanced Research Projects Agency (DARPA) recently announced a collaboration to demonstrate…

February 1, 2023

Even During Starvation – Cells’ Circadian Clock Keeps Ticking Over

Researchers demonstrate that the circadian clock aids cells in preserving and recovering their normal function…

February 1, 2023

Researchers Disprove 30-Year-Old Climate Paradigm

The emergence of forests did not decrease the concentration of CO2  in the atmosphere. It…

February 1, 2023