Health

More Effective Cancer Immunotherapy: Stanford’s New Method To Find Antigens That Trigger Specific Immune Cells

T Cells Fight Cancer Immunotherapy

Scientists have developed a new method to faster and more accurately predict which antigens will lead to a strong immune response. This could help researchers develop more effective cancer immunotherapies.

Scientists Develop New Method to Faster – and More Accurately – Find Antigens That Trigger Specific Immune Cells

A cell’s secrets can be revealed by its surface. It is decorated with tens to hundreds of thousands of molecules that help immune cells determine friend from foe. Some of those protruding molecules are antigens that trigger the immune system to attack. However, it can be difficult for scientists to identify those antigens, which often vary across individuals, in the molecular forest.

A team of Stanford scientists has developed a new method to faster and more accurately predict which antigens will lead to a strong immune response. Their approach could help researchers develop more effective cancer immunotherapies. The study was led by Polly Fordyce, an Institute Scholar at Sarafan ChEM-H, and will be reported today (September 5, 2022) in the journal Nature Methods.

T cells, a class of immune cells, crawl along and squish past other cells as they patrol the body. They use T cell receptors to molecularly read peptides, or short pieces of proteins – which are cradled within larger proteins called major histocompatibility complexes (pMHCs) that project from cell surfaces. Healthy host cells display an array of pMHCs that do not trigger an immune response. However, once T cells recognize disease-indicating peptides, they become activated to find and kill cells bearing these foreign signatures. Understanding how T cells sensitively differentiate these antigenic peptides from host peptides to avoid mistakenly killing host cells has long been a mystery.

“A T cell can detect a single antigenic peptide amongst a sea of 10,000 or 100,000 non-antigenic peptides being displayed on cell surfaces,” said Fordyce, assistant professor of bioengineering and of genetics.

The key to selectivity is in the T cell crawl. T cells’ sliding puts stress on the bonds between receptors and peptides, and most of the time, that extra stress is enough to break that bond. But sometimes, it has the opposite effect. Chris Garcia, co-author of the study and professor of molecular and cellular physiology and of structural biology, and others had previously shown that the most antigenic peptides are those whose interactions with T cell receptors grow stronger in response to sliding.

“It’s kind of like a Chinese finger trap,” said Fordyce. “When you pull a bit at the receptor-antigen interaction, the binding actually lasts longer.”

Cellular mimicry

Identifying the best antigen-receptor pairs requires simultaneously applying that sliding, or shear, force between a peptide and a T cell and measuring T cell activation. Ideally, this would be done thousands of times to get repeatable data for many possible peptide/T cell receptor pairs. However, existing methods are time-intensive and can result in measuring only one peptide with hundreds of T cells in a day.

Postdoctoral scholar Yinnian Feng, the study’s first author, developed a trick that allows the team to measure 20 unique peptides interacting with thousands of T cells in less than five hours.

To make a simplified system that mimics cells with dangling peptides, they constructed small spherical beads from a material that expands upon heating and attached a few molecules of a given peptide-studded pMHC to their surfaces. After depositing a T cell atop each bead and waiting long enough for receptors to bind to the peptides, they then very slightly heated the bead. The bead’s expansion increases the distance between tether points, and the corresponding stretching of the T cell mimics the force it would experience sliding along cells in the body. After exerting that force, the team then measured how active the T cells were.

They could do hundreds of individual experiments in parallel by using beads that are each labeled with a unique color, making it possible to track multiple different pMHCs. They took two sets of pictures tiling across each slide after each run: one set that tells them which pMHC a given bead is displaying and another that tells them how active each T cell atop that bead is. Cross-referencing those images tells them which antigens led to the strongest T cell responses.

In this demonstration of their platform, the research team showed, with 21 unique peptides, that their results confirmed known activating and non-activating peptides for one T cell receptor and uncovered a previously unknown antigen that induced a strong T cell response. Working with the Garcia lab, the researchers have also already begun to address a challenge in immunotherapy: the T cell receptors that form the highest affinity interactions with antigens in the lab are often also activated by non-antigenic peptides in the body. This is a dangerous side effect that leads to the killing of healthy cells.

Using their technology, the team of researchers characterized T cell receptors engineered to specifically recognize tumor antigens without off-target reactivity. In future work, they plan to build libraries of over 1,000 peptides to uncover novel antigens.

The scientists hope that this approach, which is quick and requires few cells, or an optimized form of it could one day be used to improve personalized immunotherapies.

“This platform can help improve efforts to engineer T cells that specifically target cancer cells, as well as determine which antigens are capable of potently activating a patient’s own T cells to more effectively target cancer cells,” said Fordyce.

Reference: “Bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation” by Yinnian Feng, Xiang Zhao, Adam K. White, K. Christopher Garcia and Polly M. Fordyce, 5 September 2022, Nature Methods.
DOI: 10.1038/s41592-022-01592-2

Fordyce is a member of Stanford Bio-X, SPARK, and the Wu Tsai Neurosciences Institute, and is a Chan Zuckerberg Biohub investigator. Garcia is a member of Stanford Bio-X, the Stanford Cancer Institute, the Wu Tsai Neurosciences Institute, and a Howard Hughes Medical Institute investigator.

Xiang Zhao and Adam K. White are also authors of the paper.

The work was funded by a Stanford Bio-X Interdisciplinary Initiatives seed grant and the National Institutes of Health.

Share
By
Stanford University

Recent Posts

Just Like Humans – More Intelligent Jays Have This Characteristic

Similar to humans, more intelligent jays display more self-control.  According to recent research, Eurasian jays…

December 3, 2022

Ride Along With Artemis Around the Moon [Official NASA Video]

Cameras on NASA’s Space Launch System (SLS) rocket and Orion spacecraft give us amazing views…

December 3, 2022

What Lies Beneath Yellowstone’s Volcano? Twice As Much Magma As Thought

Researcher’s expertise, energy, and empathy leave a legacy. Late MSU researcher Min Chen contributed to…

December 3, 2022

New Innovative System Evaluates the Habitability of Distant Planets

A computerized system categorizes planet atmospheres and determines which are viable for future settlement by…

December 3, 2022

New Catalyst Can Turn a Smelly Gas Byproduct Into a Cash Cow

A catalyst activated by light converts hydrogen sulfide into hydrogen energy in one step. Engineers and…

December 3, 2022

Scientists Discover That Binge-Eating Sweet Treats Is Influenced by Gut Microbiome

Gut Microbes Influence Binge-Eating of Sweet Treats in Mice We have all been there. You…

December 3, 2022