Space

NASA To Stand Down on Artemis I Moon Rocket Launch Attempts for Now, Reviewing Options

Artemis I Prelaunch Sunrise

NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen during sunrise atop a mobile launcher at Launch Pad 39B as preparations for launch were underway on Wednesday, August 31, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Credit: NASA/Bill Ingalls

After scrubbing yesterday’s Artemis I launch attempt when engineers could not overcome a hydrogen leak in a quick disconnect, an interface between the liquid hydrogen fuel feed line and the Space Launch System (SLS) rocket, NASA mission managers met and decided they will stand down on additional launch attempts in early September.

Over the next several days, teams will establish access to the area of the leak at Launch Pad 39B. In parallel, teams will also conduct a schedule assessment to provide additional data that will inform a decision on whether to perform work to replace a seal either at the pad, where it can be tested under cryogenic conditions, or inside the Vehicle Assembly Building (VAB).

NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen on Wednesday, August 31, 2022, during sunrise atop a mobile launcher at Launch Pad 39B as preparations for launch were underway. Credit: NASA/Bill Ingalls

NASA will need to roll the rocket and spacecraft back to the VAB before the next launch attempt to reset the system’s batteries in order to meet the requirement by the Eastern Range for the certification on the flight termination system, which is currently set at 25 days. The flight termination system is required on all rockets to protect public safety.

During yesterday’s launch attempt, engineers detected a leak in a cavity between the ground side and rocket side plates surrounding an 8-inch line used to fill and drain liquid hydrogen from the SLS rocket. Three attempts were made at reseating the seal, but all were unsuccessful.

An early phase of hydrogen loading operations is called chilldown, when launch controllers cool down the lines and propulsion system prior to flowing super cold liquid hydrogen into the rocket’s tank at minus 423 degrees F. During chilldown an inadvertent command was sent that temporarily raised the pressure in the system. While the rocket remained safe and it is too soon to tell whether the bump in pressurization contributed to the cause of the leaky seal, engineers are examining the issue.

This artist’s rendering shows an aerial view of the liftoff of NASA’s Space Launch System (SLS) rocket. This Block 1 crew configuration of the rocket that will send the first three Artemis missions to the Moon. Credit: NASA/MSFC

Because of the complex orbital mechanics involved in launching to the Moon, NASA would have had to launch Artemis I by Tuesday, September 6 as part of the current launch period. View a list of launch windows here:

August 23 – September 6

  • 12 launch opportunities
  • No launch availability on August 30, 31, and September 1

September 19 – October 4

  • 14 launch opportunities
  • No launch availability on September 29 and September 30

October 17 – October 31

  • 11 launch opportunities
  • No launch availability on October 24, 25, 26, and 28

November 12 – November 27 (preliminary)

  • 12 launch opportunities
  • No launch availability on November 20, 21, and 26

December 9 – December 23 (preliminary)

  • 11 launch opportunities
  • No launch availability on December 10, 14, 18, and 23

The periods above show launch availability through the end of 2022. Mission planners refine the periods based on updated analysis approximately two months before they begin and are subject to change.

When Artemis I is ready to launch, a range of personnel from NASA, industry, and several international partners will be on hand to support the mission. Before they get to launch day, the alignment of the Earth and Moon will determine when the Space Launch System (SLS) rocket with the uncrewed Orion spacecraft atop it can launch, along with several criteria for rocket and spacecraft performance.

Engineers identified key constraints required to accomplish the mission and keep the spacecraft safe in order to determine potential launch dates. The resulting launch periods are the days or weeks when the spacecraft and rocket can meet all mission objectives. These launch periods account for the complex orbital mechanics involved in launching on a precise trajectory toward the Moon while the Earth is rotating on its axis and the Moon is orbiting Earth each month in its lunar cycle. This results in a pattern of approximately two weeks of launch opportunities, followed by two weeks without launch opportunities.

Four primary parameters dictate launch availability within these periods. These key constraints are unique to the Artemis I mission and future launch availability beyond this flight will be determined based on capabilities and trajectories unique to each mission.

  • The launch day must account for the Moon’s position in its lunar cycle so that the SLS rocket’s upper stage can time the trans-lunar injection burn with enough performance to successfully intercept the “on ramp” for the lunar distant retrograde orbit. Future configurations of the rocket, with the more powerful Exploration Upper Stage, will enable daily, or near-daily, launch opportunities to the Moon, depending on the orbit desired.
  • The resulting trajectory for a given day must ensure Orion is not in darkness for more than 90 minutes at a time. This is required so that the solar array wings can receive and convert sunlight to electricity and the spacecraft can maintain an optimal temperature range. Mission planners eliminate potential launch dates that would send Orion into extended eclipses during the flight. This constraint requires knowledge of the Earth, Moon, and Sun along the planned mission trajectory path before the mission ever occurs. It also requires an understanding of the Orion spacecraft’s battery state of charge before entering an eclipse.
  • The launch date must support a trajectory that allows for the skip entry technique planned during Orion’s return to Earth. A skip entry is a maneuver in which the spacecraft dips into the upper part of Earth’s atmosphere and uses that atmosphere, along with the lift of the capsule, to simultaneously slow down and skip back out of the atmosphere, then reenter for final descent and splashdown. The technique allows engineers to pinpoint Orion’s splashdown location. Also, on future missions it will help lower the aerodynamic breaking loads astronauts inside the spacecraft will experience, and maintain the spacecraft’s structural loads within design limits.
  • The launch date must support daylight conditions for Orion’s splashdown. This is to initially assist recovery personnel when they locate, secure, and retrieve the spacecraft from the Pacific Ocean.

Share

View Comments

  • At this point I wouldn't trust NASA to build a birdhouse, much less a safe and reliable rocket. I know with new systems come problems but with China hell bent on becoming number one in the new space race, NASA needed to step up big. But they can't even get a test rocket off the ground, and currently have raw egg dripping down their faces. Sad.

  • Mark,
    Please realize that nobody on Earth has a rocket that can take mankind out of LOE right now. If you want to blame someone, blame yourself and the portion of the American people who aren't educated enough to read the Acts from Congress demanding NASA to use old equipment and old fueling tech. The same Congress that has cut their budget. When you decide to be a part of the solution and educate yourself, you can then graduate to having conversations at the adult table.

    • NASA still failed even with 100 billion in tax money. Matbe if they didn't have enough money, just save it and build a new port to help with the supply chain problems. BTW, NASA wastes a lot of money with diversity and climate change propaganda.

      • You tell ‘em, Hal! Don’t let the fact that you don’t know what you’re talking about stop you from talking about it.

  • Now we really know the landing on the moon was fake, with all the problems there having like really aren't you the guys the one that supposedly put a man on the moon

    • The naysayers and those that are not convinced that NASA was able to land crews on the moon. I say that your ability to think and act beyond the impossible is laughable. Manned space flight has given us hope. Something bigger to achieve.

  • They never sent humans to the moon None of the technical data adds up it's impossible for them to do it with what they had and this proves it and they're trying to save themselves embarrassment of actually going there and showing that they never did. The cold war is over NASA. Clean up your act tell the truth and get it together there's a lot of cool stuff that needs to be done

    • No this proves that new systems when built by Boeing fail, and new systems always have trouble. The Boeing thing we all already knew and we should have known the second as well need to remind you of Challenger Apollo 1 Apollo 13. We were able to go to the Moon before because astrophysics does not change orbital mechanics do not change once you get to math you can do it again rocket engineering is very difficult especially with a brand new system. Even SpaceX had their screw ups.

  • By the time Artemis finally lands astronauts on the moon there'll be a SpaceX coffee shop there to greet them.

  • After all these precious years, we're still in the rocket mode phase, why are there exterior conduits all exposed-looks hazardous to me, it looks unfinished-give it a paint job...looks like a last minute rush job...we need the best of the best of the best...Make it right.

  • Can't go to the moon now, couldn't go back then. Facts and trues crybabies, read em and weep."I'd go to the moon in a nanosecond..." lol

By
NASA

Recent Posts

Fatty Liver Disease: A Hidden Danger to Your Brain?

A study conducted by the Roger Williams Institute of Hepatology, affiliated with King's College London…

February 8, 2023

Space Mystery: Unexpected New Ring System Discovered in Our Own Solar System

ESA’s Cheops finds an unexpected ring around dwarf planet Quaoar During a break from looking…

February 8, 2023

Smart Energy Savings: Chameleon-Like Building Material Changes Its Infrared Color

To address the challenge of saving energy in the face of increasingly frequent extreme weather…

February 8, 2023

Cancer Conundrum Solved: Researchers Unravel a Population of ‘Cheating’ Cells

The study provides answers to multiple conundrums about cancer, while also uncovering new areas for…

February 8, 2023

Unlocking the Mystery of the Stellar Initial Mass Function: A New Breakthrough Discovery

The fate of galaxies is determined by the initial mass distribution at the birth of…

February 8, 2023

NASA Awards $11.7 Million to Historically Black Colleges and Universities

NASA is awarding $11.7 million to eight Historically Black Colleges and Universities (HBCUs) through the…

February 8, 2023