Space

New Method Uses Meteorites to Investigate Supernovae

Falling Stars Hold Clues of Dying Stars

Cosmic clocks. We can estimate the age of heavy elements in the primordial Solar System by measuring the traces left in meteorites by specific radioactive nuclei synthesized in certain types of supernovae. (Credit: NAOJ)

An international team of researchers has proposed a new method to investigate the inner workings of supernovae explosions. This new method uses meteorites and is unique in that it can determine the contribution from electron anti-neutrinos, enigmatic particles which can’t be tracked through other means.

Supernovae are important events in the evolution of stars and galaxies, but the details of how the explosions occur are still unknown. This research, led by Takehito Hayakawa, a visiting professor at the National Astronomical Observatory of Japan, found a method to investigate the role of electron anti-neutrinos in supernovae. By measuring the amount of 98Ru (an isotope of Ruthenium) in meteorites, it should be possible to estimate how much of its progenitor 98Tc (a short-lived isotope of Technetium) was present in the material from which the Solar System formed. The amount of 98Tc in turn is sensitive to the characteristics, such as temperature, of electron anti-neutrinos in the supernova process; as well as to how much time passed between the supernova and the formation of the Solar System. The expected traces of 98Tc are only a little below the smallest currently detectable levels, raising hopes that they will be measured in the near future.

Hayakawa explains, “There are six neutrino species. Previous studies have shown that neutrino-isotopes are predominantly produced by the five neutrino species other than the electron anti-neutrino. By finding a neutrino-isotope synthesized predominantly by the electron anti-neutrino, we can estimate the temperatures of all six neutrino species, which are important for understanding the supernova explosion mechanism.”

At the end of its life, a massive star dies in a fiery explosion known as a supernova. This explosion blasts most of the mass in the star out into outer space. That mass is then recycled into new stars and planets, leaving distinct chemical signatures which tell scientists about the supernova. Meteorites, sometimes called falling stars, formed from material left over from the birth of the Solar System, thus preserving the original chemical signatures.

Reference: “Short-Lived Radioisotope 98Tc Synthesized by the Supernova Neutrino Process” by Takehito Hayakawa, Heamin Ko, Myung-Ki Cheoun, Motohiko Kusakabe, Toshitaka Kajino, Mark D. Usang, Satoshi Chiba, Ko Nakamura, Alexey Tolstov, Ken’ichi Nomoto, Masa-aki Hashimoto, Masaomi Ono, Toshihiko Kawano and Grant J. Mathews, 4 September 2018, Physical Review Letters.
DOI: 10.1103/PhysRevLett.121.102701

Share

View Comments

  • Please ALWAYS INFORM what is artistic picture, or what is actual/real view from a telescope. Youngsters tend to belive often that artistic picture on astrophysics pages are real photo !!!!!!!!! This is very important to clerly inform readers what is only computer artistic painting but NOT A REAL PHOTO from a telescope or radiotelescope!!!!!!!!!!!!!!!@!

By
Hitoshi Yamaoka, NAOJ

Recent Posts

Researchers Uncover Origin and Abundance of Lunar Surface Water

Recently, there has been a lot of focus on the abundance, distribution, and origin of…

February 2, 2023

Cancer Scientists Develop Powerful AI Algorithm To Help Tackle Deadly Glioblastoma

Findings could introduce new and accurate AI-based opportunities in the clinical setting, potentially leading to…

February 2, 2023

Heart Disease Breakthrough: New Immune Target Discovered

Research has identified suPAR as a protein that contributes to the development of atherosclerosis and…

February 2, 2023

How an Artificial Chemical Clock Imitates a Mysterious Property of Circadian Rhythms

Circadian rhythms are natural, internal oscillations that synchronize an organism’s behaviors and physiological processes with…

February 2, 2023

A Revolutionary New Physics Hypothesis: Three Time Dimensions, One Space Dimension

How would our world be perceived by observers moving faster than light in a vacuum?…

February 2, 2023

Cosmic Breakthrough: Accurate New Map of All the Matter in the Universe Released

Analysis combines Dark Energy Survey and South Pole Telescope data to understand evolution of universe.…

February 2, 2023