Parkinson’s Warning: UCLA & Harvard Researchers Identify 10 Neurotoxic Pesticides

Spraying Pesticide

A UCLA Health and Harvard study identified 10 pesticides currently in use that significantly harm neurons implicated in Parkinson’s disease. The study used California’s pesticide database to find pesticides toxic to dopaminergic neurons, essential for voluntary movement. The research uncovered 53 pesticides potentially linked to Parkinson’s, with a particular blend used in cotton farming showing increased toxicity. Future research will focus on the biological disruptions caused by these pesticides in Parkinson’s patients.

With thousands of pesticides in use, the researchers’ new screening approach could make it easier to determine which ones are linked to the disease.

Researchers at the University of California, Los Angeles (UCLA) Health and Harvard University have identified 10 pesticides that significantly damaged neurons implicated in the development of Parkinson’s disease, providing new clues about environmental toxins’ role in the disease.

While environmental factors such as pesticide exposure have long been linked to Parkinson’s, it has been harder to pinpoint which pesticides may raise risk for the neurodegenerative disorder. Just in California, the nation’s largest agricultural producer and exporter, there are nearly 14,000 pesticide products with over 1,000 active ingredients registered for use.

Through a novel pairing of epidemiology and toxicity screening that leveraged California’s extensive pesticide use database, UCLA and Harvard researchers were able to identify 10 pesticides that were directly toxic to dopaminergic neurons. The neurons play a key role in voluntary movement, and the death of these neurons is a hallmark of Parkinson’s.

Further, the researchers found that co-exposure of pesticides that are typically used in combinations in cotton farming were more toxic than any single pesticide in that group.

For this study, published on May 16 in the journal Nature Communications, UCLA researchers examined exposure history going back decades for 288 pesticides among Central Valley patients with Parkinson’s disease who had participated in previous studies. The researchers were able to determine long-term exposure for each person and then, using what they labeled a pesticide-wide association analysis, tested each pesticide individually for association with Parkinson’s. From this untargeted screen, researchers identified 53 pesticides that appeared to be implicated in Parkinson’s – most of which had not been previously studied for a potential link and are still in use.

Those results were shared for lab analysis led by Richard Krolewski, MD, PhD, an instructor of neurology at Harvard and neurologist at Brigham and Women’s Hospital. He tested the toxicity for most of those pesticides in dopaminergic neurons that had been derived from Parkinson’s patients through what’s known as induced pluripotent stem cells, which are a type of “blank slate” cell that can be reprogrammed into neurons that closely resemble those lost in Parkinson’s disease.

The 10 pesticides identified as directly toxic to these neurons included: four insecticides (dicofol, endosulfan, naled, propargite), three herbicides (diquat, endothall, trifluralin), and three fungicides (copper sulfate [basic and pentahydrate] and folpet). Most of the pesticides are still in use today in the United States.

Aside from their toxicity in dopaminergic neurons, there is little that unifies these pesticides. They have a range of use types, are structurally distinct, and do not share a prior toxicity classification.

Researchers also tested the toxicity of multiple pesticides that are commonly applied in cotton fields around the same time, according to California’s pesticide database. Combinations involving trifluralin, one of the most commonly used herbicides in California, produced the most toxicity. Previous research in the Agricultural Health Study, a large research project involving pesticide applicators, had also implicated trifluralin in Parkinson’s.

Kimberly Paul, PhD, a lead author and assistant professor of neurology at UCLA, said the study demonstrated their approach could broadly screen for pesticides implicated in Parkinson’s and better understand the strength of these associations.

“We were able to implicate individual agents more than any other study has before, and it was done in a completely agnostic manner,” Paul said. “When you bring together this type of agnostic screening with a field-to-bench paradigm, you can pinpoint pesticides that look like they’re quite important in the disease.”

The researchers are next planning to study epigenetic and metabolomic features related to exposure using integrative omics to help describe which biologic pathways are disrupted among Parkinson’s patients who experienced pesticide exposure. More detailed mechanistic studies of the specific neuronal processes impacted by pesticides such as trifluralin and copper are also underway at the Harvard/Brigham and Women’s labs. The lab work is focused on distinct effects on dopamine neurons and cortical neurons, which are important for the movement and cognitive symptoms in Parkinson’s patients, respectively. The basic science is also expanding to studies of pesticides on non-neuronal cells in the brain – the glia – to better understand how pesticides influence the function of these critical cells.

Reference: “A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides” by Kimberly C. Paul, Richard C. Krolewski, Edinson Lucumi Moreno, Jack Blank, Kristina M. Holton, Tim Ahfeldt, Melissa Furlong, Yu Yu, Myles Cockburn, Laura K. Thompson, Alexander Kreymerman, Elisabeth M. Ricci-Blair, Yu Jun Li, Heer B. Patel, Richard T. Lee, Jeff Bronstein, Lee L. Rubin, Vikram Khurana and Beate Ritz, 16 May 2023, Nature Communications.
DOI: 10.1038/s41467-023-38215-z

Other authors include Edinson Lucumi Moreno, Jack Blank, Kristina M. Holton, Tim Ahfeldt, Melissa Furlong, Yu Yu, Myles Cockburn, Laura K. Thompson, Alexander Kreymerman, Elisabeth M. Ricci-Blair, Yu Jun Li, Heer B. Patel, Richard T Lee, Jeff Bronstein, Lee L. Rubin, Vikram Khurana, and Beate Ritz.

3 Comments on "Parkinson’s Warning: UCLA & Harvard Researchers Identify 10 Neurotoxic Pesticides"

  1. Williplantsman | May 20, 2023 at 6:51 pm | Reply

    Most of these have been used for decades, some for more than 50 years. Pesticide applicators have many times more exposure to these pesticides than anyone else. Is there any epidemiological evidence that they, as a class, suffer from parkinson’s disease more than other Americans? If not, then what is the risk to anyone else?

  2. Cynthia Olsen | May 23, 2023 at 6:41 am | Reply

    The choice of photo is interesting, as spraying pesticides on blooming plants is an unacceptable practice and illegal according to the manufacturer guidelines of most pesticides. This severely harms pollinating insects. No sure about the message being sent here. I don’t think it was meant to be about “off label ” use or improper usage.

  3. Safety studies supporting the use of a pesticide are controlled and paid for by pesticide companies. This is another example of the negligence of FDA in protecting public health. But this naïveté is written into the law at the behest of pesticide companies by a Congress that receives money from them. This is corruption of the worst kind.

Leave a Reply to Cynthia Olsen Cancel reply

Email address is optional. If provided, your email will not be published or shared.