Planet Discovered That Survived Its Star’s Death: A Crystal Ball Into Our Solar System’s Future

Jupiter-Like Exoplanet Orbiting a White Dwarf

Artist’s rendition of a newly discovered Jupiter-like exoplanet orbiting a white dwarf, or dead star. This system is evidence that planets can survive their host star’s explosive red giant phase and is the very first confirmed planetary system that serves as an analog to the fate of the Sun and Jupiter in our own solar system. Credit: W. M. Keck Observatory/Adam Makarenko

Giant gas planet orbiting a dead star gives glimpse into the predicted aftermath of our sun’s demise.

Astronomers have discovered the very first confirmed planetary system that resembles the expected fate of our solar system, when the Sun reaches the end of its life in about five billion years.

The researchers detected the system using W. M. Keck Observatory on Maunakea in Hawaiʻi; it consists of a Jupiter-like planet with a Jupiter-like orbit revolving around a white dwarf star located near the center of our Milky Way galaxy.


Artist rendering of a main sequence star ballooning into a red giant as it burns the last of its hydrogen fuel, then collapses into a white dwarf. What remains is a hot, dense core roughly the size of Earth and about half the mass of the Sun. A gas giant similar to Jupiter orbits from a distance, surviving the explosive transformation. Credit: W. M. Keck Observatory/Adam Makarenko

“This evidence confirms that planets orbiting at a large enough distance can continue to exist after their star’s death,” says Joshua Blackman, an astronomy postdoctoral researcher at the University of Tasmania in Australia and lead author of the study. “Given that this system is an analog to our own solar system, it suggests that Jupiter and Saturn might survive the Sun’s red giant phase, when it runs out of nuclear fuel and self-destructs.”

The study is published in the October 13, 2021, issue of the journal Nature.

Jupiter-Like Exoplanet Orbiting a White Dwarf

Artist’s rendition of a newly discovered Jupiter-like exoplanet orbiting a white dwarf, or dead star. This system is evidence that planets can survive their host star’s explosive red giant phase and is the very first confirmed planetary system that serves as an analog to the fate of the Sun and Jupiter in our own solar system. Credit: W. M. Keck Observatory/Adam Makarenko

“Earth’s future may not be so rosy because it is much closer to the Sun,” says co-author David Bennett, a senior research scientist at the University of Maryland and NASA’s Goddard Space Flight Center. “If humankind wanted to move to a moon of Jupiter or Saturn before the Sun fried the Earth during its red supergiant phase, we’d still remain in orbit around the Sun, although we would not be able to rely on heat from the Sun as a white dwarf for very long.”

Jupiter's Possible Future

Artist rendering of Jupiter and its white dwarf host. If humans survive to see the Sun die, they could theoretically move to a Jovian moon and remain safely in orbit. However, they could not rely on the diminished heat from the stellar corpse of our Sun once it collapses into a white dwarf. Credit: W. M. Keck Observatory/Adam Makarenko

A white dwarf is what main sequence stars like our Sun become when they die. In the last stages of the stellar life cycle, a star burns off all of the hydrogen in its core and balloons into a red giant star. It then collapses into itself, shrinking into a white dwarf, where all that’s left is a hot, dense core, typically Earth-sized and half as massive as the Sun. Because these compact stellar corpses are small and no longer have the nuclear fuel to radiate brightly, white dwarfs are very faint and difficult to detect.

High-resolution near-infrared images obtained with Keck Observatory’s laser guide star adaptive optics system paired with its Near-Infrared Camera (NIRC2) reveal the newly-discovered white dwarf is about 60 percent of the Sun’s mass and its exoplanet survivor is a giant gas world that’s about 40 percent more massive than Jupiter.

The team discovered the planet using a technique called gravitational microlensing, which occurs when a star close to Earth momentarily aligns with a more distant star. This creates a phenomenon where gravity from the foreground star acts like a lens and magnifies the light from the background star. If there is a planet orbiting the closer star, it temporarily warps the magnified light as the planet whizzes by.

Strangely, when the team tried to look for the planet’s host star, they unexpectedly discovered the starlight wasn’t bright enough to be an ordinary, main sequence star. The data also ruled out the possibility of a brown dwarf star as the host.

Jupiter-Like Planet Escapes Dying Star's Explosive Red Giant Phase

Artist rendering of a dying sequence star with an orbiting planet. The star is in the red giant phase when it burns the last of its nuclear fuel before collapsing in on itself and forming a smaller, fainter white dwarf. Credit: W. M. Keck Observatory/Adam Makarenko

“We have also been able to rule out the possibility of a neutron star or a black hole host. This means that the planet is orbiting a dead star, a white dwarf,” says co author Jean-Philippe Beaulieu, Professor, Warren chair of Astrophysics at the University of Tasmania and Directeur de Recherche CNRS at the Institut d’Astrophysique de Paris. “It offers a glimpse into what our solar system will look like after the disappearance of the Earth, whipped out in the cataclysmic demise of our Sun.”

The research team plans to include their findings in a statistical study to find out how many other white dwarfs have intact, planetary survivors.

NASA’s upcoming mission, the Nancy Grace Roman Telescope (formerly known as WFIRST), which aims to directly image giant planets, will help further their investigation. Roman will be capable of doing a much more complete survey of planets orbiting white dwarfs located all the way into the Galactic bulge at the center of the Milky Way. This will allow astronomers to determine whether it is common for Jupiter-like planets to escape their star’s final days, or if a significant fraction of them are destroyed by the time their host stars become red giants.

“This is an extremely exciting result,” says John O’Meara, chief scientist at Keck Observatory. “It’s wonderful to see today an example of the kind of science Keck will be doing en masse when Roman begins its mission.”

Reference: “A Jovian analogue orbiting a white dwarf star” by J. W. Blackman, J. P. Beaulieu, D. P. Bennett, C. Danielski, C. Alard, A. A. Cole, A. Vandorou, C. Ranc, S. K. Terry, A. Bhattacharya, I. Bond, E. Bachelet, D. Veras, N. Koshimoto, V. Batista and J. B. Marquette, 13 October 2021, Nature.
DOI: 10.1038/s41586-021-03869-6

About Adaptive Optics

W. M. Keck Observatory is a distinguished leader in the field of adaptive optics (AO), a breakthrough technology that removes the distortions caused by the turbulence in the Earth’s atmosphere. Keck Observatory pioneered the astronomical use of both natural guide star (NGS) and laser guide star adaptive optics (LGS AO) and current systems now deliver images three to four times sharper than the Hubble Space Telescope at near-infrared wavelengths. AO has imaged the four massive planets orbiting the star HR8799, measured the mass of the giant black hole at the center of our Milky Way Galaxy, discovered new supernovae in distant galaxies, and identified the specific stars that were their progenitors. Support for this technology was generously provided by the Bob and Renee Parsons Foundation, Change Happens Foundation, Gordon and Betty Moore Foundation, Mt. Cuba Astronomical Foundation, NASA, NSF, and W. M. Keck Foundation.

About NIRC2

The Near-Infrared Camera, second generation (NIRC2) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

About W. M. Keck Observatory

The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaiʻi feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

9 Comments on "Planet Discovered That Survived Its Star’s Death: A Crystal Ball Into Our Solar System’s Future"

  1. Sf. Ramon Careaga, founder EPEMC | October 14, 2021 at 4:53 am | Reply

    The stellare fusion model is patently false and has already been falsified.
    The sun is not going to die. White dwarfs don’t come from explosions.
    This is all nonsense.

  2. Who said our sun will explode the current theory is that it’s outer most shell will expand off of it to leave the white dwarf.

  3. He must believe that the earth is flat and fossil fuels are in unlimited supply!

  4. Why would we (as humanity) be clinging to a dying star system, except as a scientific outpost? In a billion years, I’ll be disappointed if we’ve done no more than dip our toes in the interstellar medium. Onward and outwards is the modality of the universe and written into our earliest (successful) cultures. We’ve attained the technology level for middle class exploration of our solar system today, but social issues inhibit growth and adoption. To wax crazy, microlensing may be how astrology is a thing, but it’s still insane to believe the alignment of celestial bodies determines your life or the times.

  5. Bank in August I have pictures and a video of a black something that was coming up with the sun and it had black dots in a single line 3/4 of the way around it. Don’t know how to get it to you. It’s awesome to look at and ponder. Thanks

  6. A bit confused : If the Sun were to lose half it’s mass, why would Jupiter (etcetera) not simply leave? Break orbit. Kind of exactly the way a stone leaves a sling when the slinger lets go of it.

  7. I think Metro has a point, which is related to what I often try to say after reading articles claiming Earth is necessarily doomed. We can imagine extraterrestrials easily constructing Dyson features, but for some reason writers of astronomical articles usually assume our descendants/successors will never achieve planetary engineering.

  8. Rayford Furry | March 6, 2023 at 12:35 pm | Reply

    As much money as eBay is making off us sellers they should not make us cover a refund when a buyer says they never received their product or it is damaged due to shipping or them not telling the truth. I always get a receipt of postage but buyers don’t want to pay for tracking which is from $4.50 on up on a cheaper item and especially when the item costs less than the tracking shipping. So in order to sell my stuff I have to offer just regular shipping which doesn’t come with tracking. Than I have gotten some buyers who claim to not have received their orders so I end up having to refund them cause I only have the receipt of the postage and picture I took of their order before shipping and eBay won’t cover it when you don’t have tracking. It’s unfair that I have to lose money from this happening and this past month way to much due to possible scammers or I guess USPS losing my orders. It’s disturbing to me and I don’t even know how long I am going to sell on eBay now because of this happening when I send my orders out every time I get an order.

Leave a Reply to John Bayer Cancel reply

Email address is optional. If provided, your email will not be published or shared.