Physics

Realization of a “Gedankenexperiment”

Four Particles of Light Quantum State

This abstract illustration shows four particles of light can be produced and manipulated in such a way that one can later decide in which quantum state two of the particles have been. Credit: Jon Heras, Equinox Graphics Ltd.

A new study set to be published this week describes how physicists at the University of Vienna demonstrated in an experiment that the decision whether two particles were in an entangled or in a separable quantum state can be made even after these particles have been measured and may no longer exist.

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) have, for the first time, demonstrated in an experiment that the decision whether two particles were in an entangled or in a separable quantum state can be made even after these particles have been measured and may no longer exist. Their results will be published this week in the journal Nature Physics.

Entangled States

According to the Austrian physicist Erwin Schrödinger, entanglement is the characteristic trait of quantum mechanics. In addition to its crucial role for the foundations of physics, entanglement is also a key resource for upcoming quantum information technologies such as quantum cryptography and quantum computation. Entangled particles exhibit correlations which are stronger and more intricate than those allowed by the laws of classical physics. If two particles are in an entangled quantum state, they have perfectly defined joint properties at the expense of losing their individual properties. This is like having two dice that have no orientation until they are subject to measurement, upon which they certainly show the same (random) side up. In contrast, so-called separable quantum states allow for a classical description, because every particle has well-defined properties on its own. Two dice, each one of them with its own well-defined orientation, are in a separable state. Now, one would think that at least the nature of the quantum state must be an objective fact of reality. Either the dice are entangled or not. Zeilinger’s team has now demonstrated in an experiment that this is not always the case.

Exciting realization of a “Gedankenexperiment”

The authors experimentally realized a “Gedankenexperiment” called “delayed-choice entanglement swapping”, formulated by Asher Peres in the year 2000. Two pairs of entangled photons are produced, and one photon from each pair is sent to a party called Victor. Of the two remaining photons, one photon is sent to the party Alice and one is sent to the party Bob. Victor can now choose between two kinds of measurements. If he decides to measure his two photons in a way such that they are forced to be in an entangled state, then also Alice’s and Bob’s photon pair becomes entangled. If Victor chooses to measure his particles individually, Alice’s and Bob’s photon pair ends up in a separable state. Modern quantum optics technology allowed the team to delay Victor’s choice and measurement with respect to the measurements which Alice and Bob perform on their photons. “We found that whether Alice’s and Bob’s photons are entangled and show quantum correlations or are separable and show classical correlations can be decided after they have been measured”, explains Xiao-song Ma, lead author of the study.

According to the famous words of Albert Einstein, the effects of quantum entanglement appear as “spooky action at a distance”. The recent experiment has gone one remarkable step further. “Within a naïve classical word view, quantum mechanics can even mimic an influence of future actions on past events”, says Anton Zeilinger.

Reference: “Experimental delayed-choice entanglement swapping” by Xiao-song Ma, Stefan Zotter, Johannes Kofler, Rupert Ursin, Thomas Jennewein, Časlav Brukner and Anton Zeilinger, 22 April 2012, Nature Physics.
DOI: 10.1038/nphys2294

Share

View Comments

  • Nature is like the internet: whatever is being done never gets forgotten. Basically we live in a computer.

By
University of Vienna

Recent Posts

Tremendous Potential – Vitamin K Found To Prevent Cell Death

Scientists discover a new function for a long-known molecule.  A team of researchers from Helmholtz…

October 3, 2022

Explosive Neutron Star Merger Captured in Millimeter Light for the First Time

The flash is one of the most energetic short-duration gamma-ray bursts ever observed. For the…

October 3, 2022

New Method Converts Fish Waste Into Valuable Nanomaterial in Seconds

Researchers create a simple, quick, and energy-efficient approach for synthesizing quality carbon nano-onions from fish scales.…

October 3, 2022

Scientists Find That Men Have a High Probability of Outliving Women

Large disparities in life expectancy may often obscure significant overlap in lifespan. A statistical analysis…

October 3, 2022

Incredible Telescope View Captures DART Asteroid Impact

On Monday, September 26, 2022, at 7:14 p.m. EDT (23:14 UTC), NASA's DART spacecraft successfully…

October 3, 2022

New Air Filter Features Excellent Performance and Endurance in Harsh Environments

New air filter design promises strong potential for applications in automobiles and industry. A high-performance…

October 3, 2022