Chemistry

Researchers Capture Electron Transfer Image in Electrocatalysis Process

Electron Transfer in Electrocatalysis Process

Scientists capture electron transfer image in electrocatalysis process. Credit: DICP

The involvement between electron transfer (ET) and catalytic reaction at electrocatalyst surface makes electrochemical process challenging to understand and control. How to experimentally determine ET process occurring at nanoscale is important to understand the overall electrochemical reaction process at active sites.

Recently, a research group led by Prof. LI Can and Prof. FAN Fengtao from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) captured the electron transfer imaging in electrocatalysis process.

This study was recently published in the journal Nano Letters.

The researchers established an in-situ electrochemical imaging method with nanoscale spatial resolution, which combined atomic force microscopy and scanning electrochemical imaging. This method can realize the three-dimensional movement of the scanning nanoprobe to map the local distribution of the generated outer-spherical electron transfer molecules and the catalytic product molecules.

The visual electron transfer images on metal nanoplates directly demonstrated that the electron transfer process at nanoscale presented a site-dependent heterogeneity.

Moreover, to decouple the interference of the mass transfer effect on the electron transfer, the researchers conducted a series of elaborate experiments and complex mathematical modeling to extract the rate constant and internal potential difference. They found that the relationship between the interfacial inner potential difference and the rate constant followed a linear fashion.

This work realizes the in-situ observation of electron transfer process and catalytic reaction in the electrochemical reaction, and provides new ideas for the development of in-situ imaging characterization method and the detection of the mechanism of the electrocatalytic reactions.

“This is a new milestone of the scanning electrochemical probe techniques, making it possible to discover the structure-performance relation of nanocatalyst from the bottom of physical and chemical principles,” commented by one of the reviewers.

Reference: “Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism” by Wei Nie, Qianhong Zhu, Yuying Gao, Ziyuan Wang, Yong Liu, Xun Wang, Ruotian Chen, Fengtao Fan and Can Li, 14 October 2021, Nano Letters.
DOI: 10.1021/acs.nanolett.1c03529

Share
By
Dalian Institute of Chemical Physics

Recent Posts

Even Moderate Exercise Can Greatly Increase Brain Size

The effects are more pronounced in brain areas with high oxygen demand. Exercise keeps both…

October 4, 2022

Caltech’s Breakthrough New Nanophotonic Chip “Squeezes” More Out of Light

Electronic computing and communications have advanced significantly since the days of radio telegraphy and vacuum…

October 4, 2022

Parallels to HIV: Another Fatal Monkey Virus Could Be Poised for Spillover to Humans

Evoking parallels to HIV, authors are calling on global health community to be vigilant. According…

October 4, 2022

Scientists Show Transmission of Epigenetic Memory Across Multiple Generations

Changing the epigenetic marks on chromosomes results in altered gene expression in offspring and in…

October 4, 2022

Spectacular Planetary-Scale “Heat Wave” Discovered in Jupiter’s Atmosphere

An unexpected ‘heat wave’ has been discovered in Jupiter’s atmosphere. It reaches a scorching temperature…

October 4, 2022

“Really Impressive” – Astronomers Capture the First Wide-Field Snapshots of X-Ray Universe

EP-WXT Pathfinder has released its first results. EP-WXT Pathfinder, an experimental prototype of a module…

October 4, 2022