Categories: Technology

Researchers Use Robot Fish to Lead Golden Shiner School

Biomimetic Robotic Fish

Through a series of experiments, researchers at NYU-Poly have shown that a biomimetic fish, like this one pictured, is capable of leading a school of live ones. Credit: Polytechnic Institute of New York University

Researchers from Polytechnic Institute of New York University (NYU-Poly) developed a bio-inspired robotic fish to mimic the tail propulsion of a swimming fish and conducted experiments at varying tail beat frequencies and flow speeds. They found that when the robot fish was placed with a school of golden shiners and simulated the familiar tail movement of a leader fish, the school assumed the behavior patterns they exhibit in the wild.

Probing the largely unexplored question of what characteristics make a leader among schooling fish, researchers have discovered that by mimicking nature, a robotic fish can transform into a leader of live ones.

Through a series of experiments, researchers from Polytechnic Institute of New York University (NYU-Poly) aimed to increase understanding of collective animal behavior, including learning how robots might someday steer fish away from environmental disasters. Nature is a growing source of inspiration for engineers, and the researchers were intrigued to find that their biomimetic robotic fish could not only infiltrate and be accepted by the swimmers, but actually assume a leadership role.

In a paper published online in the Journal of the Royal Society Interface, Stefano Marras, at the time a postdoctoral fellow in mechanical engineering at NYU-Poly and currently a researcher at Italy’s Institute for the Marine and Coastal Environment-National Research Council, and Maurizio Porfiri, NYU-Poly associate professor of mechanical engineering, found conditions that induced golden shiners to follow in the wake of the biomimetic robot fish, taking advantage of the energy savings generated by the robot.

The researchers designed their bio-inspired robotic fish to mimic the tail propulsion of a swimming fish, and conducted experiments at varying tail beat frequencies and flow speeds.  In nature, fish positioned at the front of a school beat their tails with greater frequency, creating a wake in which their followers gather. The followers display a notably slower frequency of tail movement, leading researchers to believe that the followers are enjoying a hydrodynamic advantage from the leaders’ efforts.

In an attempt to create a robotic leader, Marras and Porfiri placed their robot in a water tunnel with a golden shiner school. First, they allowed the robot to remain still, and unsurprisingly, the “dummy” fish attracted little attention. When the robot simulated the familiar tail movement of a leader fish, however, members of the school assumed the behavior patterns they exhibit in the wild, slowing their tails and following the robotic leader.

“These experiments may open up new channels for us to explore the possibilities for robotic interactions with live animals — an area that is largely untapped,” explained Porfiri. “By looking to nature to guide our design, and creating robots that tap into animals’ natural cues, we may be able to influence collective animal behavior to aid environmental conservation and disaster recovery efforts.”

The researchers posit that robotic leaders could help lead fish and other wildlife that behave collectively — including birds — away from toxic situations such as oil or chemical spills or human-made dangers such as dams. Other experimenters have found success in prompting wildlife to move using non-living attractants, but the researchers believe this is the first time that anyone has used biomimetics to such effect.

Reference: “Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion” by Stefano Marras and Maurizio Porfiri, 22 February 2012, Journal of the Royal Society Interface.
DOI: 10.1098/rsif.2012.0084

Marras and Porfiri conducted their experiments with support from the National Science Foundation.

Share

View Comments

  • So, you drop a robo-tuna in a shoal and lead the entire batch up the factory ship's ramp and into the freezer. No dolphin kill, no loss of sea turtles . . . very neat!

    Lead fish away from environmental disasters, indeed. Puh-leeze!

By
Polytechnic Institute of New York University

Recent Posts

Caltech’s Breakthrough New Nanophotonic Chip “Squeezes” More Out of Light

Electronic computing and communications have advanced significantly since the days of radio telegraphy and vacuum…

October 4, 2022

Parallels to HIV: Another Fatal Monkey Virus Could Be Poised for Spillover to Humans

Evoking parallels to HIV, authors are calling on global health community to be vigilant. According…

October 4, 2022

Scientists Show Transmission of Epigenetic Memory Across Multiple Generations

Changing the epigenetic marks on chromosomes results in altered gene expression in offspring and in…

October 4, 2022

Spectacular Planetary-Scale “Heat Wave” Discovered in Jupiter’s Atmosphere

An unexpected ‘heat wave’ has been discovered in Jupiter’s atmosphere. It reaches a scorching temperature…

October 4, 2022

“Really Impressive” – Astronomers Capture the First Wide-Field Snapshots of X-Ray Universe

EP-WXT Pathfinder has released its first results. EP-WXT Pathfinder, an experimental prototype of a module…

October 4, 2022

“Electric Pill” Shown To Help Patients With Severe COVID-19

Activating the auricular vagus nerve provides anti-inflammatory effects in severe Covid-19 cases. A system out…

October 4, 2022