Categories: Science

Scientists Stabilize the Magnetic Moment of Single Holmium Atoms

Single Atom Bit Forms Smallest Memory in the World

The scanning tunneling microscope makes single holmium atoms on a platinum surface visible. (Photo: KIT/T. Miyamachi)

Researchers from Karlsruhe Institute of Technology have made a big step towards a single-atom bit, showing that the magnetic moments of single holmium atoms on a highly conductive metallic substrate can reach lifetimes of the order of minutes.

One atom equals one bit: According to this design principle, we would like to construct magnetic data memories in the future. Presently, a compound of several million atoms is needed to stabilize a magnetic bit in a way that hard disk data are secure for several years. However, researchers from KIT have just made a big step towards a single-atom bit: They fixed a single atom on a surface such that the magnetic spin remained stable for ten minutes. Their report is published in the current issue of the Nature magazine.

“Often, a single atom fixed to a substrate is so sensitive that its magnetic orientation is stable for fractions of a microsecond (200 nanoseconds) only,” Wulf Wulfhekel from Karlsruhe Institute of Technology (KIT) explains. Together with colleagues from Halle, he has now succeeded in extending this period by a factor of about a billion to several minutes. “This does not only open up the possibility of designing more compact computer memories, but could also be the basis for the setup of quantum computers,” Wulfhekel says. Quantum computers are based on quantum physics properties of atomic systems. In theory at least, their speed might exceed that of classical computers by several factors.

In their experiment, the researchers placed a single holmium atom onto a platinum substrate. At temperatures close to absolute zero, i.e. at about 1 degree Kelvin, they measured the magnetic orientation of the atom using the fine tip of a scanning tunneling microscope. The magnetic spin changed after about 10 minutes only. “Hence, the magnetic spin of the system is stable for a period that is about a billion times longer than that of comparable atomic systems,” Wulfhekel emphasizes. For the experiment, a novel scanning tunneling microscope of KIT was applied. Thanks to its special cooling system for the temperature range close to absolute zero, it is nearly vibration-free and allows for long measurement times.

“To stabilize the magnetic moment for longer periods of time, we suppressed the impact of the surroundings on the atom,” Arthur Ernst from the Max Planck Institute of Microstructure Physics explains. He performed theoretical calculations for the experiment. Normally, the electrons of the substrate and of the atom interact quantum-mechanically and destabilize the spin of the atom within microseconds or even faster. When using holmium and platinum at low temperatures, disturbing interactions are excluded due to the symmetry properties of the quantum system. “In principle, holmium and platinum are invisible to each other as far as spin scattering is concerned,” Ernst says. Now, the holmium spin might be adjusted and information might be written by means of external magnetic fields. This would be the prerequisite for the development of compact data memories or quantum computers.

Publication: Toshio Miyamachi, et al., “Stabilizing the magnetic moment of single holmium atoms by symmetry,” Nature 503, 242–246 (14 November 2013); doi:10.1038/nature12759

Image: KIT/T. Miyamachi

Share
By
Karlsruhe Institute of Technology (KIT)

Recent Posts

Physicists Create Theoretical Wormhole Using Quantum Computer

Physicists observe wormhole dynamics using a quantum computer in a step toward studying quantum gravity…

December 1, 2022

New Study Finds That Deep Brain Stimulation Is Highly Effective in Treating Severe OCD

Two-thirds of individuals treated have shown significant improvement, with a nearly 50% reduction in symptoms.…

December 1, 2022

Major Asteroid Impact May Have Caused Mars Megatsunami

Mars Megatsunami May Have Been Caused by Chicxulub-Like Asteroid Impact A Martian megatsunami may have…

December 1, 2022

Cancer Weakness Discovered: New Method Pushes Cancer Cells Into Remission

Cancer cells delete DNA when they go to the dark side, so a team of doctors…

December 1, 2022

Sleeping Too Much Linked to a 69% Increased Risk of Dementia

A new study analyzes how sleep duration and timing impact dementia risk. The time individuals…

December 1, 2022

NASA Artemis I – Flight Day 15: Orion Capsule “Go” for Distant Retrograde Orbit Departure

On Wednesday, November 30, NASA’s Artemis I mission management team met to review the overall…

December 1, 2022