Synthetic Silicate Nanoplatelets Stimulate Stem Cells Into Bone Cells

Synthetic Silicate Nanoplatelets Induce Stem Cells to Become Bone Cells

Researchers have found that silicate nanoplatelets can stimulate stem cells to become bone cells, as determined by the formation of bone matrix (in red). Credit: Image courtesy of Khademhosseini Lab

New research shows that synthetic silicate nanoplatelets can stimulate stem cells into bone cells without the need of additional bone-inducing factors.

Researchers from Harvard-affiliated Brigham and Women’s Hospital (BWH) are the first to report that synthetic silicate nanoplatelets (also known as layered clay) can induce stem cells to become bone cells without the need of additional bone-inducing factors. Synthetic silicates are made up of simple or complex salts of silicic acids, and have been used extensively for various commercial and industrial applications, such as food additives, glass and ceramic fillers, and anti-caking agents.

The research was published online in Advanced Materials.

“With an aging population in the U.S., injuries and degenerative conditions are subsequently on the rise,” said Harvard Medical School Associate Professor of Medicine Ali Khademhosseini of the BWH Division of Biomedical Engineering, the senior author of the study. “As a result, there is an increased demand for therapies that can repair damaged tissues. In particular, there is a great need for new materials that can direct stem cell differentiation and facilitate functional tissue formation. Silicate nanoplatelets have the potential to address this need in medicine and biotechnology.”

“Based on the strong preliminary studies, we believe that these highly bioactive nanoplatelets may be utilized to develop devices such as injectable tissue repair matrixes, bioactive fillers, or therapeutic agents for stimulating specific cellular responses in bone-related tissue engineering,” said Akhilesh Gaharwar of the BWH Division of Biomedical Engineering, the study’s first author and a visiting fellow at the Wyss Institute for Biologically Inspired Engineering at Harvard University. “Future mechanistic studies will be performed to better understand underlying pathways that govern favorable responses, leading to a better understanding of how materials strategies can be leveraged to further improve construct performance and ultimately shorten patient recovery time.”

Reference: “Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells” by Akhilesh K. Gaharwar, Silvia M. Mihaila, Archana Swami, Alpesh Patel, Shilpa Sant, Rui L. Reis, Alexandra P. Marques, Manuela E. Gomes and Ali Khademhosseini, 13 May 2013, Advanced Materials.
DOI: 10.1002/adma.201300584

This research was supported by the National Institutes of Health, U.S. Army Engineer Research and Development Center, Institute for Soldier Nanotechnologies, and the National Science Foundation.

Be the first to comment on "Synthetic Silicate Nanoplatelets Stimulate Stem Cells Into Bone Cells"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.