Biology

Viruses May Be “Watching” You – Lying in Wait Before Multiplying and Killing

Illustration of Bacteriophages

Phages can sense bacterial DNA damage, which triggers them to replicate and jump ship.

Viruses may be ‘watching’ you – some microbes lie in wait until their hosts unintentionally give them the signal to start multiplying and kill them.

Especially after more than two years of the COVID-19 pandemic, many people picture a virus as a nasty spiked ball – essentially a mindless killer that gets into a cell and hijacks its machinery to create a gazillion copies of itself before bursting out. For many viruses, including the coronavirus that causes COVID-19, the “mindless killer” moniker is essentially true.

However, there’s more to virus biology than meets the eye.

A suitable illustration is HIV, the virus that causes AIDS. HIV is a retrovirus that does not immediately go on a killing spree when it enters a cell. Instead, it integrates itself into your chromosomes and chills, waiting for the proper opportunity to command the cell to make copies of it and burst out to infect other immune cells and eventually cause AIDS.

Bacteriophages, or simply phages, are naturally occurring viruses that attack and kill bacteria. They cannot infect human cells. Phages are extremely diverse and exist everywhere in the environment, including in our bodies. In fact, humans contain more phages than human cells.

A phage has three main parts: a head, a sheath, and a tail. The phage uses its tail to attach to a bacterial cell. They use the bacteria to replicate themselves. After finding a “matching” bacterial cell, the phage injects its genetic material, hijacking the system normally used for bacterial reproduction. Instead the system will make thousands more phages, which ultimately burst the bacterial cell, releasing it into the environment.

Exactly what moment HIV is waiting for is not clear, as it’s still an area of active study. However, research on other viruses has long indicated that these pathogens can be quite “thoughtful” about killing. Of course, viruses cannot think the way you and I do. But, as it turns out, evolution has bestowed them with some pretty elaborate decision-making mechanisms. For example, some viruses will choose to leave the cell they have been residing in if they detect DNA damage. Not even viruses, it appears, like to stay on a sinking ship.

For over two decades, my laboratory has been studying the molecular biology of bacteriophages, or phages for short, the viruses that infect bacteria. Recently, my colleagues and I demonstrated that phages can listen for key cellular signals to help them in their decision-making. Even worse, they can use the cell’s own “ears” to do the listening for them.

Escaping DNA damage

If the enemy of your enemy is your friend, phages are certainly your friends. Phages control bacterial populations in nature, and clinicians are increasingly using them to treat bacterial infections that do not respond to antibiotics.

The best-studied phage, lambda, works a bit like HIV. Upon entering the bacterial cell, lambda decides whether to replicate and kill the cell outright, like most viruses do, or to integrate itself into the cell’s chromosome, as HIV does. If the latter, lambda harmlessly replicates with its host each time the bacteria divides.


This video shows a lambda phage infecting E. coli.

However, like HIV, lambda is not just sitting idle. It uses a special protein called CI like a stethoscope to listen for signs of DNA damage within the bacterial cell. If the bacterium’s DNA gets compromised, that’s bad news for the lambda phage nested within it. Damaged DNA leads straight to evolution’s landfill because it’s useless for the phage that needs it to reproduce. So lambda turns on its replication genes, makes copies of itself, and bursts out of the cell to look for other undamaged cells to infect.

Tapping the cell’s communication system

Instead of gathering intel with their own proteins, some phages tap the infected cell’s very own DNA damage sensor: LexA.

Proteins like CI and LexA are transcription factors that turn genes on and off by binding to specific genetic patterns within the DNA instruction book that is the chromosome. Some phages like Coliphage 186 have figured out that they don’t need their own viral CI protein if they have a short DNA sequence in their chromosomes that bacterial LexA can bind to. Upon detecting DNA damage, LexA will activate the phage’s replicate-and-kill genes, essentially double-crossing the cell into committing suicide while allowing the phage to escape.

Researchers first reported CI’s role in phage decision-making in the 1980s and Coliphage 186’s counterintelligence trick in the late 1990s. Since then, there have been a few other reports of phages tapping bacterial communication systems. One example is phage phi29, which exploits its host’s transcription factor to detect when the bacterium is getting ready to generate a spore, or a kind of bacterial egg capable of surviving extreme environments. Phi29 instructs the cell to package its DNA into the spore, killing the budding bacteria once the spore germinates.


Transcription factors turn genes on and off.

In recently published research, my colleagues and I show that several groups of phages have independently evolved the ability to tap into yet another bacterial communication system: the CtrA protein. CtrA integrates multiple internal and external signals to set in motion different developmental processes in bacteria. Key among these is the production of bacterial appendages called flagella and pili. As it turns out, these phages attach themselves to the pili and flagella of bacteria in order to infect them.

Our leading hypothesis is that phages use CtrA to guesstimate when there will be enough bacteria nearby sporting pili and flagella that they can readily infect. A pretty smart trick for a “mindless killer.”

These aren’t the only phages that make elaborate decisions – all without the benefit of even having a brain. Some phages that infect Bacillus bacteria produce a small molecule each time they infect a cell. The phages can sense this molecule and use it to count the number of phage infections taking place around them. Like alien invaders, this count helps decide when they should switch on their replicate-and-kill genes, killing only when hosts are relatively abundant. This way, the phages make sure that they never run out of hosts to infect and guarantee their own long-term survival.

Countering viral counterintelligence

A good question is why you should care about the counterintelligence ops run by bacterial viruses. While bacteria are very different from people, the viruses that infect them are not that different from the viruses that infect humans. Pretty much every single trick played by phages has later been shown to be used by viruses that infect humans. If a phage can tap bacterial communication lines, why wouldn’t a human virus tap yours?

So far, scientists don’t know what human viruses could be listening for if they hijack these lines, but there are plenty of conceivable options. I believe that, like phages, human viruses could potentially be able to count their numbers to strategize, detect cell growth and tissue formation, and even monitor immune responses. For now, these possibilities are only speculation, but scientific investigation is underway to investigate.

Having viruses listening to your cells’ private conversations is not the rosiest of pictures, but it’s not without a silver lining. As intelligence agencies all around the world know quite well, counterintelligence only works when it’s covert. Once detected, the system can very easily be exploited to feed misinformation to your enemy. Similarly, I believe that future antiviral therapies may be able to combine conventional artillery, like antivirals that prevent viral replication, with information warfare trickery, such as making the virus believe the cell it is in belongs to a different tissue.

But, hush, don’t tell anybody. Viruses could be listening!

Written by Ivan Erill, Associate Professor of Biological Sciences, University of Maryland, Baltimore County.

This article was first published in The Conversation.

Share

View Comments

  • This so interesting to me!!! Last year I was telling my wife about how the new strains of Covid spread and when I was talking with her I got this picture of the viruses talking and communicating globally about their strategies. It made sense to me that if they communicate with themselves in the body, then why wouldn't they communicate with each other outside of the body! To organize, developer strategies, and share intelligence! It's almost like science is finally realizing that all beings and creatures great and small are senintiet and a community! No more wondering if animals and plants have feelings and thoughts...they all do because they are alive in the universal sea of vibration just like us human meat bags!

  • @Carlos Barros

    You clearly don't understand what the study said.. Viruses do not communicate with each other.

    However we are clearly on a path to show that viruses are apart of the machinery we call life on this planet which humans are not apart from.

    The medical field thinks they can just destroy any non human cell and you will be perfectly healthy still. Pretty sad field tbh.

  • I've wondered about a similar process with cancers - that the human body has cancer cells waiting for a signal from somewhere..."do we or don't we" or "go now." Or, at least, some cancers. Also, an odd thing I've seen over my long life is that people who don't know they have cancer are usually living longer and more vibrantly - but many, once they have been diagnosed, seem to fade very fast, like they somehow give up even if being treated and told their cancer has a high survival rate. Somewhere there's a mind body connection that doesn't necessarily have anything to do with a good attitude or determination or "belief."

  • Viruses don't exist.
    Dr Andrew Kaufman, Dr Tom Cowan, Dr Sam Bailey and Dr Stefan Lanka have proven this. Research their information, it's easily available on all platforms.

By
Ivan Erill, University of Maryland, Baltimore County

Recent Posts

Personality and Divorce: Breakups Are More Common in Albatross Couples With Shy Males

In a long-studied population of wandering albatrosses, females are less likely to stick with a…

November 27, 2022

Liftoff! SpaceX Falcon 9 Soars Into the Sky With Space Station Supplies

T-0, ignition, and liftoff of the SpaceX Falcon 9 rocket and Dragon spacecraft at 2:20…

November 27, 2022

NASA Artemis I – Orion Spacecraft Surpasses Apollo 13 Record Distance From Earth

On day 11 of the Artemis I mission, Orion continues its journey beyond the Moon…

November 27, 2022

New Study Reveals a Secret to Becoming More Active

Recent research reveals that to become less sedentary, you may need an active friend. A…

November 27, 2022

NASA Artemis I – Orion Spacecraft Enters Moon Orbit

Yesterday at 4:52 p.m. CST  (23:52 CET, 22:52 GMT) the European Service Module’s auxiliary thrusters…

November 26, 2022

Magma Beneath a Long-Dormant Volcano Has Been Observed Moving Upwards

Research reveals magma activity beneath Mount Edgecumbe. According to a recent study from the Alaska…

November 26, 2022