Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Health»New PCR Test Can Identify All COVID-19 Variants in a Positive Patient Sample
    Health

    New PCR Test Can Identify All COVID-19 Variants in a Positive Patient Sample

    By ElsevierMarch 22, 2022No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    New PCR Test Can Identify All SARS-CoV-2 Variants in a Positive Patient Sample
    Each hairpin shaped molecular beacon has a specific color and fluoresces when it binds to its target genetic mutation. Credit: Salvatore Marras

    Assay can quickly and easily inform decisions about public health policy and treatment for individual patients and can rapidly detect new variants, such as omicron, investigators report in The Journal of Molecular Diagnostics.

    After the start of the SARS-C0V-2 pandemic, investigators from ResearchPath LLC and their collaborators at Rutgers University quickly dedicated resources to develop accurate and reliable COVID-19 testing. As variants emerged, they developed a PCR test that uses molecular beacons not only to diagnose COVID-19 infection, but also to identify the specific variant causing that infection. Their research appears in The Journal of Molecular Diagnostics, published by Elsevier. Their methodology is openly available so that it can be replicated by any facility that can run a PCR test.

    “It is extraordinary to see that SARS-CoV-2 was not a monolithic infection with a predictable set of clinical features, but rather an ever-evolving disease for which the different strains produce unique clinical features that affect testing, symptoms, and even which organ systems can be attacked,” explained lead investigator Sanjay Tyagi, PhD, Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA.

    Identifying specific strains reveals important information such as the length of incubation period, length of contagious period, transmissibility, pathogenicity, and even changes in the predominant symptoms.

    Information on strain types is generally reported by the international community or a few states with large populations that perform genetic sequencing. The deep sequencing needed to identify SARS-CoV-2 strains is accurate and can identify each mutation present in a sample, but it is costly, slow, and requires specialized equipment. Yet knowledge of the strain type provides important information for public health professionals, policymakers, and individuals.

    “Knowing that a highly contagious and dangerous strain is emerging in a local community could inform policymakers to initiate safety measures to limit spread,” said co-investigator Ashley Hill, MD, ResourcePath LLC, Sterling, VA, USA. “It can also serve as an early warning system for healthcare systems that need to plan for surges in ER visits and ICU care. Knowing which strain has infected a person can also help determine which treatments would be most beneficial.”

    Molecular Beacons and the Rutgers-RP RT-PCR Assay

    Using real-time PCR probes designed by Rutgers University and already used around the world for many purposes, Rutgers designed the Rutgers-RP RT-PCR assay to detect mutations in SARS-CoV-2 that have been shown to increase immune escape, avoid neutralization, and increase transmissibility. They pioneered the use of molecular beacons to identify specific genetic mutations. Molecular beacons are hairpin-shaped molecules that can be designed to selectively bind to a specific mutant sequence, avoiding wild-type sequences that often differ by a single nucleotide.

    Nine mutations were selected for testing, and the beacon for each has differently colored dyes. Every original variant of concern – alpha, beta, gamma, delta, and omicron — has a unique combination of these mutations. and when the beacon binds to its target molecule, its distinct color can be detected by the assay.

    Each beacon was tested individually to confirm its specificity to the assigned mutation. Then, the beacons were combined into a multiplex assay and tested by RT-PCR on 26 SARS–CoV2–positive patient samples that had previously been tested and identified with deep sequencing. Two samples were identified as the alpha variant, two as the epsilon variant, and eight as the delta variant. The multiplex assay was in full agreement with results from deep sequencing, with a sensitivity and specificity of 100%.

    Researchers report that the test is also very adaptable. When omicron emerged, the investigators were able to design a beacon in less than a month to identify a mutation that is unique to omicron and is important for immune evasion. The investigators identified the omicron variant in 17 of 33 additional patient samples that had been previously tested, and the results were 100% in agreement.

    “The tools we developed to track and identify new variants will be useful for this pandemic and for any unforeseen viruses or pathogens that may arise going forward,” said lead author Ryan J. Dikdan, BS, Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA.

    “The SARS-CoV-2 virus is not done with us yet. We desperately need a worldwide monitoring system for the inevitable emerging strains that could be even more contagious or deadly,” the investigators said. “The Rutgers-RP RT-PCR variant assay could be widely deployed in laboratories around the world right now to monitor all the known variants of concern. The assay will be updated with new primer/probe sets for each new important variant that emerges.”

    Reference: “Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants” by Ryan J. Dikdan, Salvatore A.E. Marras, Amanda P. Field, Alicia Brownlee, Alexander Cironi, D. Ashley Hill and Sanjay Tyagi, 1 February 2022, Journal of Molecular Diagnostics.
    DOI: 10.1016/j.jmoldx.2022.01.004

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    COVID-19 Infectious Diseases Popular Public Health Virology
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Researchers Identify Key Biomarker That Predicts Who Will Have Severe COVID-19

    First Proof That a Safer UV Light Effectively Kills COVID-19 Virus

    Warning: More Cats Might Have COVID-19 Than First Believed

    Small Neutralizing Antibody Identified That May Prevent COVID-19 Infection

    New Research Explains Multipronged SARS-CoV-2 Attack and Widepread COVID-19 Infection

    Common Molecular Feature of Antibodies That Neutralize SARS-CoV-2 Discovered, Boosting COVID-19 Vaccine Prospects

    Far-UVC Light Safely Kills 99.9% of Airborne Coronaviruses

    How COVID-19 Kills: New Study Explains the Mechanisms of the New Coronavirus

    Vitamin D Linked to Low Coronavirus Death Rate

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    The Sun’s Hidden Threads Revealed in Stunning Solar Flare Images

    Revolutionary Cortisol Test Lets You “See” Stress With a Smartphone Camera

    How B Vitamins Could Slow Cognitive Decline and Protect Against Dementia

    Common Pesticide Linked to “Remarkably Widespread” Brain Abnormalities in Children

    One Snake, Two Venoms – And Both Are Lethal

    First-Ever Treatment for Rare Eye Disease Wins FDA Approval After Landmark Trials

    Challenging Over 150 Years of Immunotherapy: Scientists Unveil New Weapon That Kills Cancer Without the Immune System

    Scientists Think This Star Could Be the Next Supernova

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Tropical Fruit Molecule Could Revolutionize Liver Cancer Treatment
    • Popular Artificial Sweetener Could Sabotage Cancer Treatment, Study Warns
    • The Unexpected Reason Baboons March in Order
    • 75,000-Year-Old Lost World of Arctic Animals Uncovered in Norwegian Cave
    • DNA From a Mysterious Extinct Hominin May Have Helped Ancient Americans Survive
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.