Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Active Camouflage Using a Polymer Network of Liquid Crystals
    Technology

    Active Camouflage Using a Polymer Network of Liquid Crystals

    By University of PennsylvaniaFebruary 19, 2022No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Artificial Chromatophores
    The researchers’ artificial chromatophores consist of membranes stretched over circular cavities attached to pneumatic pumps. Pressurizing the cavity stretches the membrane, changing the pitch of the helix-shaped liquid crystal inside. Correlating the relationship between diameter, pressure, pitch, and color, the researchers are able to treat each cavity like pixel, shifting its color to match the surrounding pattern in this demonstration from their recent study. Credit: University of Pennsylvania

    Inspired by animal camouflage, artificial chromatophores can change color with minimal deformation, offering new applications in displays and sensors.

    The animal kingdom is full of creatures with active camouflage. What looks like a drab pile of sand and rocks might actually be a brightly colored squid, expanding and contracting structures within their skin to reveal shades of brown and gray instead of vibrant blue and yellow. Known as chromatophores, these cells can expand and retract internal reflective plates in response to external stimuli, allowing the animal to match the colors and patterns of their surroundings, and disappear in an instant.

    Creating Artificial Chromatophores with Liquid Crystals

    Now, researchers at the University of Pennsylvania’s School of Engineering and Applied Science are taking inspiration from this kind of active camouflage. Using thin, flexible membranes made from a polymer network of liquid crystals that are arranged in helical shapes, these researchers have developed a kind of artificial chromatophore that can change colors instantly — from near-infrared to visible to ultraviolet — on command.

    Artificial Chromatophore Pixels
    With each artificial chromatophore acting like a pixel, the researchers’ prototype is able to match the surrounding color and texture to achieve a camouflage effect. Credit: University of Pennsylvania

    These membranes are situated over tiny cavities arranged in a grid, each of which can be pneumatically inflated to a precise pressure. As a cavity inflates, the membrane is stretched, shrinking its thickness and shifting its apparent color.

    Advantages of the New Color-Changing Technology

    Critically, these membranes do not need to be stretched much to achieve this effect. Using an amount of pressure equivalent to a gentle touch, their color can be changed to anything within the visible spectrum. Color-changing materials that use similar mechanisms have historically needed to be deformed by 75 percent to shift from red to blue, making them impossible to use in settings with fixed dimensions, such as displays or windows.

    Because the researchers’ artificial chromatophores need less than 20 percent deformation to achieve the same effect, they can be arranged like pixels in an LCD monitor. And because the layered liquid crystals in the researchers’ system have their own reflective color, they do not need to be backlit and thus don’t need a constant source of power to maintain their intrinsically vibrant appearance.

    Shu Yang and Se-Um Kim
    Shu Yang and Se-Um Kim. Credit: University of Pennsylvania

    While the researchers’ prototype displays only have a few dozen pixels each, a study demonstrating the principle behind their color-changing ability outlines their potential in a variety of camouflage techniques, as well as applications in architecture, robotics, sensors, and other fields.

    The study, published in the journal Nature Materials, was led by Shu Yang, Joseph Bordogna Professor and Chair of the Department of Materials Science and Engineering, and Se-Um Kim, then a postdoctoral researcher in her lab. Fellow Yang lab members Young-Joo Lee, Jiaqi Liu, Dae Seok Kim, and Haihuan Wang also contributed to the research.

    “Our lab has always been interested in structural color, including how to change it by using mechanical forces,” says Yang. “For example, we previously demonstrated that a color-changing polymer may signal traumatic brain injuries in soldiers and athletes. In looking at how some animals have evolved structural color, we realized they had stretchy cells that worked like pixels in a display and that we could potentially take a similar approach.”

    Structural color, the phenomenon that gives butterfly wings and peacock feathers iridescence that is often brighter than pigment or dye-based colors, is produced when light interacts with microscopic features of a surface. In the case of the researchers’ displays, those features are found in a class of materials known as “main-chain chiral nematic liquid crystalline elastomers” or MCLCEs. Liquid crystals are intrinsically anisotropic materials, meaning their properties vary based on their directional orientation. The helical shape of MCLCEs allows for large and elastic anisotropy, since the pitch of the helix can be easily altered.

    As a cavity in the display is inflated, its MCLCE membrane is stretched. Much like compressing a spring, this reduces the pitch of the liquid crystal helix within the membrane, changing the wavelength of light that is reflected at the viewer.

    By plotting out the exact pressure required to get each artificial chromatophore to a desired color, the researchers were able to program them like the pixels in a display. This level of control is possible even without separate pneumatic pumps for each pixel.

    “I wanted to generate red, green, and blue colors simultaneously in a simple operation,” Kim says, “so I connected cavities of different width to the same air channel. This means that, despite experiencing the same pressure, the degree of deformation and the color varies from pixel to pixel, reducing the complexity of the overall device.”

    Artificial Chromatophore Seven-Segment Color Displays
    Multiple pixels can be connected to the same air pump, allowing for more complex displays. Credit: University of Pennsylvania

    Using only two air channels, the researchers’ prototype can produce 7-by-5 checkerboard patterns that match the shading and texture of a surrounding surface. With seven channels, they can render digits in the style of the seven-segment color displays found in LCD clocks.

    Mechanochromic Performance and Future Directions

    The researchers believe that the unique mechanochromic performance of MCLCEs will inspire the creation of new biomimetic photonic devices and sensors that are highly sensitive and complex despite the material’s relatively simple mechanism. They also plan to further demonstrate 3D displays, as well as “smart” windows that respond to ambient temperatures by changing color.

    Reference: “Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers” by Se-Um Kim, Young-Joo Lee, Jiaqi Liu, Dae Seok Kim, Haihuan Wang and Shu Yang, 6 September 2021, Nature Materials.
    DOI: 10.1038/s41563-021-01075-3

    The research was supported by Donors of the American Chemical Society(ACS)/Petroleum Research Fund (#573238) and the National Science Foundation (NSF) through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530). The authors acknowledge use of scanning electron microscopy and the Dual Source and Environmental X-ray Scattering facility supported by NSF/MRSEC(DMR-1720530) through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania. The equipment purchase was made possible by an NSF MRI grant (17-25969), an ARO DURIP grant (W911NF-17-1-0282), and the University of Pennsylvania.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Materials Science University of Pennsylvania
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Speed Unleashed: How a Tiny Quantum Switch Is Supercharging Data Centers

    Growing “Metallic Wood” to New Heights: Radically Decreasing a Material’s Density Without Sacrificing Strength

    New Strategies for Designing Efficient Electroluminescent Materials

    Researchers Demonstrate a New Paradigm for Solar Cell Construction

    Plasmonic Nanostructures Offer New Method for Harvesting Energy from Light

    Flexible, Low-Voltage Circuits Made From Nanocrystals

    The First All-optical Nanowire Switch

    Light Activated Muscle Cells May Advance Biorobotics

    Researchers Develop World’s Lightest Material

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Inexpensive New Liquid Battery Could Replace $10,000 Lithium Systems

    New Research Reveals Not All Ultra-Processed Foods Are Bad

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • MIT Physicists Propose First-Ever “Neutrino Laser”
    • Scientists Grow “Gold Quantum Needles” for Sharper Biomedical Imaging
    • Chemists Create Next-Gen Rocket Fuel Compound That Packs 150% More Energy
    • Purpose in Life Linked to 28% Lower Risk of Cognitive Impairment and Dementia
    • Nearly Half of People With Diabetes Don’t Know They Have It
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.