Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Major Breakthrough for Efficient and High-Speed Spintronic Data Storage Devices
    Technology

    Major Breakthrough for Efficient and High-Speed Spintronic Data Storage Devices

    By Institut National de la Recherche Scientifique - INRSApril 28, 2022No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Ultrafast Magnetic Scattering
    Ultrafast magnetic scattering on ferrimagnets enabled by a bright Yb-based soft x-ray source, which made the cover of Optica. Credit: Ella Maru Studio

    INRS researchers and international partners have succeeded in looking at spin inside rare earth materials, using a tabletop ultrafast soft-X-ray microscope, for the first time.

    Complex networks of systems are required for sharing real-time information. Switching the magnetization, or electron spin, of magnetic materials with ultra-short femtosecond laser pulses is a promising strategy for speeding up data storage devices. However, how the spin evolves in the nanoworld on extremely short time scales, such as one-millionth of one billionth of a second, has remained largely mysterious. In collaboration with TU Wien, Austria, the French national synchrotron facility (SOLEIL), and other international partners, Professor François Légaré’s team at the Institut national de la recherche scientifique (INRS) has made a significant breakthrough in this field. On April 6, 2022, their study was published in the journal Optica.

    Until now, studies on the subject have relied heavily on limited-access large X-ray facilities such as free-electron lasers and synchrotrons. The team demonstrates, for the first time, a tabletop ultrafast soft X-ray microscope to spatiotemporally resolve the spin dynamics inside rare earth materials, which are promising for spintronic devices.

    This new soft X-ray source based on a high-energy Ytterbium laser represents a significant step forward in the investigation of future energy-efficient and high-speed spintronic devices and could be used for many applications in physics, biology, and chemistry.

    “Our approach provides a robust, cost-efficient, and energy-scalable elegant solution for many laboratories. It allows the study of ultrafast dynamics in nanoscale and mesoscale structures with both nanometer spatial and femtosecond temporal resolutions, as well as with the element specificity,” says Professor Andrius Baltuska, at TU Wien.

    Bright X-Ray Pulses To Watch the Spin

    With this bright source of X-ray photons, a series of snapshot images of the nanoscale rare earth magnetic structures have been recorded. They clearly expose the fast demagnetization process, and the results provide rich information on the magnetic properties that are as accurate as those obtained using large-scale X-ray facilities.

    “Development of ultrafast tabletop X-ray sources is exciting for cutting-edge technological applications and modern fields of science. We are excited about our results, which could be helpful for future research for spintronics, as well as other potential fields,” says INRS postdoctoral researcher, Dr. Guangyu Fan.

    “Rare earth systems are trending in the community because of their nanometer size, faster speed, and topologically protected stability. The X-ray source is very attractive for many studies on future spintronic devices composed of rare earth.” says Nicolas Jaouen, senior scientist at the French national synchrotron facility.

    Professor Légaré emphasizes the collaborative work between experts in the development of state-of-the-art light sources and ultrafast dynamics in magnetic materials at the nanoscale. “Considering the quick emergence of high-power Ytterbium laser technology, this work represents huge potential for high-performance soft X-ray sources. This new generation of lasers, which will be available soon at the Advanced Laser Light Source (ALLS), will have many future applications for the fields of physics, chemistry, and even biology,” he says.

    Reference: “Ultrafast magnetic scattering on ferrimagnets enabled by a bright Yb-based soft x-ray source” by G. Fan, K. Légaré, V. Cardin, X. Xie, R. Safaei, E. Kaksis, G. Andriukaitis, A. Pugžlys, B. E. Schmidt, J. P. Wolf, M. Hehn, G. Malinowski, B. Vodungbo, E. Jal, J. Lüning, N. Jaouen, G. Giovannetti, F. Calegari, Z. Tao, A. Baltuška, F. Légaré and T. Balčiūnas, 6 April 2022, Optica.
    DOI: 10.1364/OPTICA.443440

    The study received fincancial support from the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec – Nature et technologies (FRQNT) and PRIMA Québec, among others. The ALLS laboratory also benefits from an investment from the Canada Foundation for Innovation (CFI).

    About INRS

    INRS is a university dedicated exclusively to graduate level research and training. Since its creation in 1969, INRS has played an active role in Québec’s economic, social, and cultural development and is ranked first for research intensity in Québec. INRS is made up of four interdisciplinary research and training centres in Québec City, Montréal, Laval, and Varennes, with expertise in strategic sectors: Eau Terre Environnement, Énergie Matériaux Télécommunications, Urbanisation Culture Société, and Armand-Frappier Santé Biotechnologie. The INRS community includes more than 1,500 students, postdoctoral fellows, faculty members, and staff.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    INRS Lasers Popular Spintronics
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    A Laser Breakthrough: First Commercially Scalable Integrated Laser and Microcomb on a Single Chip

    Record-Breaking Laser Pulses Allow Astrophysical Phenomena to Be Studied in the Lab

    Space-Time Refraction Defies Fermat’s Principle: New Class of Laser Beam Doesn’t Follow Normal Laws of Refraction

    Breakthrough Towards Lasers Powerful Enough to Investigate a New Kind of Physics

    CERN Particle Accelerator Laser Technology Used to Improve Mobile Phone Networks

    More Powerful and Smaller Particle Accelerators Possible With “Game Changer” Laser

    Engineers Show Feasibility of Organic Topological Insulators

    Electronic Read-Out of the Quantum State of an Atom

    High Resolution 3D Printer Prints 5 Meters per Second

    Leave A Reply Cancel Reply


    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    NASA’s Webb Telescope Discovers 300 Mysterious Objects That Shouldn’t Exist

    What Really Happens When Blood Pressure Drops Below 120

    Scientists Discover Strange New Quantum Behavior in Superconducting Material

    According to Harvard Scientists, This Missing Nutrient May Be the Key to Stopping Alzheimer’s

    Blocking This One Protein Restores Aging Brains

    Common Food Additive Solves Decades-Long Neuroscience Problem

    Drinking Beetroot Juice Could Reduce Older Adults’ Blood Pressure

    Brightest Radio Flash Ever Detected Lights Up Nearby Galaxy

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • After 60 Years, Scientists Uncover Hidden Brain Pathway Behind Diabetes Drug Metformin
    • Scientists Discover a Surprising New Way To Fight Diabetes
    • Owning a Smartphone Before 13 Linked to Alarming Mental Health Declines, Global Study Finds
    • Buried Secrets Reveal How Humans Changed the Great Salt Lake Forever
    • These Ant Wars Are Pure Chaos, But They Might Save Your Morning Coffee
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.