Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Breakdown in Atomic Structure Enables Engineers to Bend Light to Enhance Wavelength Conversion
    Technology

    Breakdown in Atomic Structure Enables Engineers to Bend Light to Enhance Wavelength Conversion

    By University of California – Los AngelesJuly 30, 2021No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    InAs Lattice Schematic
    Schematic of InAs lattice in contact with a nanoantenna array that bends incoming light so it is tightly confined around the shallow surface of the semiconductor. The giant electric field created across the surface of the semiconductor accelerates photo-excited electrons, which then unload the extra energy they gained by radiating it at different optical wavelengths. Credit: Deniz Turan/UCLA

    UCLA scientists turned semiconductor defects into assets, enabling efficient light conversion for advanced imaging and sensing.

    Electrical engineers from the UCLA Samueli School of Engineering have developed a more efficient way of converting light from one wavelength to another, opening the door for improvements in the performance of imaging, sensing, and communication systems.

    Mona Jarrahi, professor of electrical and computer engineering at UCLA Samueli, led the Nature Communications-published research.

    Finding an efficient way to convert wavelengths of light is crucial to the improvement of many imaging and sensing technologies. For example, converting incoming light into terahertz wavelengths enables imaging and sensing in optically opaque environments. However, previous conversion frameworks were inefficient and required bulky and complex optical setups.

    The UCLA-led team has devised a solution to enhance wavelength-conversion efficiency by exploring a generally undesirable but natural phenomenon called semiconductor surface states.

    Surface states occur when surface atoms have an insufficient number of other atoms to bind to, causing a breakdown in atomic structure. These incomplete chemical bonds, also known as “dangling bonds,” cause roadblocks for electric charges flowing through semiconductor devices and affect their performance.

    “There have been many efforts to suppress the effect of surface states in semiconductor devices without realizing they have unique electrochemical properties that could enable unprecedented device functionalities,” said Jarrahi, who leads the UCLA Terahertz Electronics Laboratory.

    Fabricated Nanoantenna Array
    Photograph, microscopy, and scanning electron microscopy images of a fabricated nanoantenna array placed at the tip of a fiber for optical-to-terahertz wavelength conversion. Credit: Deniz Turan/UCLA

    Using Built-In Electric Fields to Accelerate Electrons

    In fact, since these incomplete bonds create a shallow but giant built-in electric field across the semiconductor surface, the researchers decided to take advantage of surface states for improved wavelength conversion.

    Incoming light can hit the electrons in the semiconductor lattice and move them to a higher energy state, at which point they are free to jump around within the lattice. The electric field created across the surface of the semiconductor further accelerates these photo-excited, high-energy electrons, which then unload the extra energy they gained by radiating it at different optical wavelengths, thus converting the wavelengths.

    However, this energy exchange can only happen at the surface of a semiconductor and needs to be more efficient. In order to solve this problem, the team incorporated a nanoantenna array that bends incoming light so it is tightly confined around the shallow surface of the semiconductor.

    Effortless Conversion Without Extra Energy Input

    “Through this new framework, wavelength conversion happens easily and without any extra added source of energy as the incoming light crosses the field,” said Deniz Turan, the study’s lead author and a member of Jarrahi’s research laboratory who recently graduated with his doctorate in electrical engineering from UCLA Samueli.

    The researchers successfully and efficiently converted a 1,550-nanometer wavelength light beam into the terahertz part of the spectrum, ranging from wavelengths of 100 micrometers up to 1 millimeter. The team demonstrated the wavelength-conversion efficiency by incorporating the new technology into an endoscopy probe that could be used for detailed in-vivo imaging and spectroscopy using terahertz waves.

    Without this breakthrough in wavelength conversion, it would have required 100 times the optical power level to achieve the same terahertz waves, which the thin optical fibers used in the endoscopy probe cannot support. The advance can apply to optical wavelength conversion in other parts of the electromagnetic spectrum, ranging from microwave to far-infrared wavelengths.

    Reference: “Wavelength conversion through plasmon-coupled surface states” by Deniz Turan, Ping Keng Lu, Nezih T. Yardimci, Zhaoyu Liu, Liang Luo, Joong-Mok Park, Uttam Nandi, Jigang Wang, Sascha Preu and Mona Jarrahi, 30 July 2021, Nature Communications.
    DOI: 10.1038/s41467-021-24957-1

    Two addition members of Jarrahi’s research group, Ping Keng Lu and Nezih Yardimci, are co-authors of the study. Other co-authors are from Technical University Darmstadt in Germany and the Ames Laboratory, a U.S. Department of Energy (DOE) lab affiliated with Iowa State University.

    The Office of Naval Research supported the research, and the DOE provided a grant for Turan.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Electrical Engineering Materials Science Semiconductors UCLA
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Breakthrough Discovery Could Help Electronic Devices Last Longer

    Technology Breakthrough Enables Practical Semiconductor Spintronics

    New Material Breakthrough Could Be the Key to Revolutionary, Transparent Electronics

    Exploring a New Material Class to Help Keep Pace With Moore’s Law

    2D Heterostructures Rolled Like Sushi May Lead to Ultra Miniaturized Electronics

    “Mount Everest” of Electronic Materials: Stretching Diamond for Next-Generation Microelectronics

    MIT Discovery Offers New Promise for Nonsilicon Computer Transistors

    Smarter Artificial Intelligence Technology in a New Light-Powered Chip

    Chance Discovery Results in New Type of Transistor for High-Power Electronic Devices

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Inexpensive New Liquid Battery Could Replace $10,000 Lithium Systems

    New Research Reveals Not All Ultra-Processed Foods Are Bad

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Breakthrough “Artificial Cartilage” Could Transform Arthritis Treatment
    • Popular Weight-Loss Drugs Like Ozempic Pose Hidden Risks for Young Women, Warn Researchers
    • Astrophysicists Zero In on Source of Strange Gamma-Ray Signals
    • Mysterious “Soot Planets” May Be Hiding in Plain Sight Among the Stars
    • 90% Chance: Physicists Predict a Black Hole Could Explode This Decade
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.