Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Energy Breakthrough – Machine Learning Unravels Secrets of Argyrodites
    Chemistry

    Energy Breakthrough – Machine Learning Unravels Secrets of Argyrodites

    By Duke UniversityMay 25, 2023No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Structure of Solid State Material
    An illustration of the hybrid crystalline-liquid atomic structure in the superionic phase of Ag8SnSe6 — a material that shows great promise for allowing commercial solid-state batteries. The tube-like filaments show the liquid-like distribution of silver ions flowing through the crystalline scaffold of tin and selenium atoms (blue and orange). Credit: Olivier Delaire, Duke University

    The utilization of machine learning techniques unveils valuable insights into a broad category of materials under investigation for solid-state batteries.

    Researchers from Duke University and associated partners have uncovered the atomic mechanics that render a group of substances, known as argyrodites, promising prospects for solid-state battery electrolytes and thermoelectric energy converters.

    Their findings, made possible through a machine learning approach, may potentially pave the way for advancements in energy storage. Such advancements could be beneficial for uses like domestic battery-powered walls and rapid-charging electric vehicles.

    The results were recently published in the journal Nature Materials.

    “This is a puzzle that has not been cracked before because of how big and complex each building block of the material is,” said Olivier Delaire, associate professor of mechanical engineering and materials science at Duke. “We’ve teased out the mechanisms at the atomic level that is causing this entire class of materials to be a hot topic in the field of solid-state battery innovation.”

    As the world moves toward a future built on renewable energy, researchers must develop new technologies for storing and distributing energy to homes and electric vehicles. While the standard bearer to this point has been the lithium-ion battery containing liquid electrolytes, it is far from an ideal solution given its relatively low efficiency and the liquid electrolyte’s affinity for occasionally catching fire and exploding.

    These limitations stem primarily from the chemically reactive liquid electrolytes inside Li-ion batteries that allow lithium ions to move relatively unencumbered between electrodes. While great for moving electric charges, the liquid component makes them sensitive to high temperatures that can cause degradation and, eventually, a runaway thermal catastrophe.

    Many public and private research labs are spending a lot of time and money to develop alternative solid-state batteries out of a variety of materials. If engineered correctly, this approach offers a much safer and more stable device with a higher energy density — at least in theory.

    Argyrodites: A Promising Alternative

    While nobody has yet discovered a commercially viable approach to solid-state batteries, one of the leading contenders relies on a class of compounds called argyrodites, named after a silver-containing mineral. These compounds are built from specific, stable crystalline frameworks made of two elements with a third free to move about the chemical structure. While some recipes such as silver, germanium, and sulfur are naturally occurring, the general framework is flexible enough for researchers to create a wide array of combinations.

    “Every electric vehicle manufacturer is trying to move to new solid-state battery designs, but none of them are disclosing which compositions they’re betting on,” Delaire said. “Winning that race would be a game changer because cars could charge faster, last longer, and be safer all at once.”

    In the new paper, Delaire and his colleagues look at one promising candidate made of silver, tin, and selenium (Ag8SnSe6). Using a combination of neutrons and x-rays, the researchers bounced these extremely fast-moving particles off atoms within samples of Ag8SnSe6 to reveal its molecular behavior in real-time.

    Team member Mayanak Gupta, a former postdoc in Delaire’s lab who is now a researcher at the Bhabha Atomic Research Center in India, also developed a machine-learning approach to make sense of the data and created a computational model to match the observations using first-principles quantum mechanical simulations.

    A Material Between Solid and Liquid States

    The results showed that while the tin and selenium atoms created a relatively stable scaffolding, it was far from static. The crystalline structure constantly flexes to create windows and channels for the charged silver ions to move freely through the material. The system, Delaire said, is like the tin and selenium lattices remain solid while the silver is in an almost liquid-like state.

    “It’s sort of like the silver atoms are marbles rattling around about the bottom of a very shallow well, moving about like the crystalline scaffold isn’t solid,” Delaire said. “That duality of a material living between both a liquid and solid state is what I found most surprising.”

    The results and, perhaps more importantly, the approach combining advanced experimental spectroscopy with machine learning, should help researchers make faster progress toward replacing lithium-ion batteries in many crucial applications. According to Delaire, this study is just one of a suite of projects aimed at a variety of promising argyrodite compounds comprising different recipes. One combination that replaces the silver with lithium is of particular interest to the group, given its potential for EV batteries.

    “Many of these materials offer very fast conduction for batteries while being good heat insulators for thermoelectric converters, so we’re systematically looking at the entire family of compounds,” Delaire said. “This study serves to benchmark our machine learning approach that has enabled tremendous advances in our ability to simulate these materials in only a couple of years. I believe this will allow us to quickly simulate new compounds virtually to find the best recipes these compounds have to offer.”

    Reference: “Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6” by Qingyong Ren, Mayanak K. Gupta, Min Jin, Jingxuan Ding, Jiangtao Wu, Zhiwei Chen, Siqi Lin, Oscar Fabelo, Jose Alberto Rodríguez-Velamazán, Maiko Kofu, Kenji Nakajima, Marcell Wolf, Fengfeng Zhu, Jianli Wang, Zhenxiang Cheng, Guohua Wang, Xin Tong, Yanzhong Pei, Olivier Delaire and Jie Ma, 18 May 2023, Nature Materials.
    DOI: 10.1038/s41563-023-01560-x

    This work was supported by the Guangdong Basic and Applied Basic Research Foundation, the National Natural Science Foundation of China, the Institute of High Energy Physics, Chinese Academy of Science, the Open project of Key Laboratory of Artificial Structures and Quantum Control, the U.S. National Science Foundation, the “Shuguang Program” from the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, the Australia Research Council.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Battery Technology Duke University Energy Machine Learning Popular
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    The Future of Sustainable Energy? Scientists Create First-Ever Battery Using Hemoglobin

    What Makes Electric Vehicle Fires So Difficult To Extinguish? [Video]

    Scientists Use Fruit Peel to Turn Old Lithium-Ion Batteries Into New

    Solar Flow Battery: Single Device Generates, Stores and Redelivers Renewable Electricity From the Sun

    Scientists Explore Hazards of Pushing Lithium-Ion Cells Too Far [Video]

    New Electrolyte Improves Cycle Life of Next-Generation Lithium-Ion Batteries

    New Concept Enables More Eco-Friendly Batteries With Twice the Energy Density

    Catalytic Reactor Turns Greenhouse Gas Into Pure Liquid Fuel

    New Aluminum Batteries Increase the Range of UUVs Tenfold

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    It’s Snowing Salt. The Strange Phenomenon Happening Deep in the Dead Sea

    Stanford Scientists Successfully Reverse Autism Symptoms in Mice

    Scientists Finally Solve the Mystery of the Sun’s Fastest Particles

    Don’t Throw Away Those Cannabis Leaves – They’re Packed With Rare Compounds

    Why Cancer Spreads: Scientists Uncover a New Clue Inside the Cell’s Power Plant

    These Glow-in-the-Dark Succulents Could Replace Your Night Light

    Mezcal Worm in a Bottle Yields Surprising DNA Results

    The Math Says Life Shouldn’t Exist: New Study Challenges Origins Theories

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • If Aliens Are Looking for Us, This Is How They’d Find Us
    • “Alien Aurora” – Scientists Spot Never-Before-Seen Plasma Waves in Jupiter’s Polar Lights
    • 50-Million-Year-Old Sea Turtle Unearthed in Syria Stuns Paleontologists
    • 41,000 Years Ago, Something Weird in Space Changed How Humans Lived on Earth
    • $1 Billion Saved Each Year? Scientists Question Adult Booster Shots
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.