Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Nanodiamond Sensors Created That Can Act As Both Heat Sources and Thermometers
    Technology

    Nanodiamond Sensors Created That Can Act As Both Heat Sources and Thermometers

    By Osaka UniversityJanuary 15, 2021No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Nanodiamond Quantum Sensor Coated With a Pyrogenic Polymer
    (a) Illustration of the structure of a nanodiamond quantum sensor coated with a pyrogenic polymer, and how it operates as a hybrid nanoheater/thermometer. (b) Electron microscope image of hybrid sensors. (c) Working principle of the hybrid sensor for measuring nanometric thermal conductivity. In a medium with high thermal conductivity, the temperature increase of the diamond sensor is moderate, because heat readily diffuses away. In contrast, in a low thermal conductivity medium, the temperature rise is significantly larger. Intracellular thermal conductivity can be determined by measuring the temperature change of the hybrid sensors in cells. Credit: Osaka University

    An international team of researchers created nanodiamond sensors that can act as both heat sources and thermometers, and is using them to measure the thermal conductivity inside living cells, which may lead to new diagnostics tools and cancer therapies.

     A team of scientists from Osaka University, The University of Queensland, and the National University of Singapore’s Faculty of Engineering used tiny nanodiamonds coated with a heat-releasing polymer to probe the thermal properties of cells. When irradiated with light from a laser, the sensors acted both as heaters and thermometers, allowing the thermal conductivity of the interior of a cell to be calculated. This work may lead to a new set of heat-based treatments for killing bacteria or cancer cells.

    The Mystery of In-Cell Thermal Conductivity

    Even though the cell is the fundamental unit of all living organisms, some physical properties have remained difficult to study in vivo. For example, a cell’s thermal conductivity, as well as the rate that heat can flow through an object if one side is hot while the other side is cold, remained mysterious. This gap in our knowledge is important for applications such as developing thermal therapies that target cancer cells, and for answering fundamental questions about cell operation.

    HeLa Cell With a Hybrid Sensor Inside
    (a) Temperature increases observed with hybrid sensors in air, water, oil, and inside cell. These results are consistent with the idea that higher temperature increases occur in solvents with smaller thermal conductivities. The literature values for the thermal conductivities of air, water, and oil are 0.026, 0.61, and 0.135 W/m* K, respectively. (b) Bright field microscopic image of a HeLa cell with a hybrid sensor inside. Credit: Osaka University

    Creating Smart Nanodiamond Sensors

    Now, the team has developed a technique that can determine the thermal conductivity inside living cells with a spatial resolution of about 200 nm. They created tiny diamonds coated with a polymer, polydopamine, that emit both fluorescent light as well as heat when illuminated by a laser. Experiments showed that such particles are non-toxic and can be used in living cells. When inside a liquid or a cell, the heat raises the temperature of the nanodiamond. In media with high thermal conductivities, the nanodiamond did not get very hot because heat escaped quickly, but in an environment of low thermal conductivity, the nanodiamonds became hotter. Crucially, the properties of the emitted light depend on the temperature, so the research team could calculate the rate of heat flow from the sensor to the surroundings.

    Having good spatial resolution allowed measurements in different locations inside the cells. “We found that the rate of heat diffusion in cells, as measured by the hybrid nanosensors, was several times slower than in pure water, a fascinating result which still waits for a comprehensive theoretical explanation and was dependent on the location,” senior author Taras Plakhotnik says.

    “In addition to improving heat-based treatments for cancer, we think potential applications for this work will result in a better understanding of metabolic disorders, such as obesity,” senior author Madoka Suzuki says. This tool may also be used for basic cell research, for example, to monitor biochemical reactions in real time.

    Reference: “In situ measurements of intracellular thermal conductivity using heater thermometer hybrid diamond nanosensors” by Shingo Sotoma, Chongxia Zhong, James Chen Yong Kah, Hayato Yamashita, Taras Plakhotnik, Yoshie Harada and Madoka Suzuki, 15 January 2021, Science Advances.
    DOI: 10.1126/sciadv.abd7888

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Biochemistry Biophysics Materials Science Nanotechnology Optics Osaka University Polymers
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Shutting the Nano-Gate: Breakthrough May Lead to Single-Molecule Sensors and Cheaper Genomic Sequencing

    Sorting Out Viruses With Machine Learning: AI-Powered Nanotechnology May Lead to New Rapid COVID-19 Tests

    Tiny Three-Dimensional Chessboards Could Lead to “Paper Electronics”

    Switchable Optical Nanoantennas Made From a Conducting Polymer

    Tubulane Inspired Ultrahard Polymers Are Full of Holes, but Stop Bullets Better Than Solid Materials

    Large Scale Integrated Circuits Produced in Printing Press Based on Organic Electrochemical Transistors

    Bioprinting Living Cells Extremely Fast and at Very High Resolution in a 3D Printer

    New Wavelength Detector Could Improve Data Communications

    A Cost-Effective Fabrication Method for Micro-Scale Graphene-Based Supercapacitors

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Inexpensive New Liquid Battery Could Replace $10,000 Lithium Systems

    New Research Reveals Not All Ultra-Processed Foods Are Bad

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • MIT Physicists Propose First-Ever “Neutrino Laser”
    • Scientists Grow “Gold Quantum Needles” for Sharper Biomedical Imaging
    • Chemists Create Next-Gen Rocket Fuel Compound That Packs 150% More Energy
    • Purpose in Life Linked to 28% Lower Risk of Cognitive Impairment and Dementia
    • Nearly Half of People With Diabetes Don’t Know They Have It
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.