Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Super-Earth Secrets: James Webb Telescope Reveals Unexpected Exoplanet Atmosphere
    Space

    Super-Earth Secrets: James Webb Telescope Reveals Unexpected Exoplanet Atmosphere

    By University of BernJune 3, 2024No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Super-Earth Exoplanet 55 Cancri e
    This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 1.4 million miles (0.015 astronomical units), completing one full orbit in less than 18 hours. (Mercury is 25 times farther from the Sun than 55 Cancri e is from its star.) The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)

    Recent observations by the James Webb Space Telescope have shed light on the enigmatic super-Earth 55 Cancri e, revealing its likely atmosphere composed of gases like carbon monoxide or dioxide. This discovery highlights the planet’s extreme conditions due to its proximity to its star, and its potential to offer insights into the early atmospheres of rocky planets.

    55 Cancri e is one of five known planets orbiting a Sun-like star in the constellation Cancer. With a diameter nearly twice that of Earth and a density slightly greater, the planet is classified as a super-Earth: larger than Earth, smaller than Neptune, and similar in composition to the rocky planets in our solar system.

    Brice-Olivier Demory from the Center for Space and Habitability CSH of the University of Bern and member of the NCCR PlanetS is co-author of the study that was just published in Nature.

    He says: “55 Cancri e is one of the most enigmatic exoplanets. Despite enormous amounts of observing time obtained with a dozen of ground and space facilities in the past decade, its very nature has remained elusive, until today, when parts of the puzzle could finally be put together thanks to the James Webb Space Telescope (JWST).”

    Unexpectedly, these observations show that it might be possible for a hot and highly irradiated rocky planet to sustain a gaseous atmosphere, and this bodes well for JWST’s ability to characterize cooler – potentially habitable – rocky planets orbiting Sun-like stars. Renyu Hu from NASA’s Jet Propulsion Laboratory (JPL) leads the team publishing their results in Nature. “JWST is really pushing the frontiers of exoplanet characterization to rocky exoplanets,” Hu said. “It is truly enabling a new type of science.”

    CHEOPS
    Artist’s impression of CHEOPS. Credit: ESA / ATG medialab

    CHEOPS Space Telescope Delivered Important Findings

    Demory was invited to the research program by Hu who was one of his colleagues when he was at the Massachusetts Institute of Technology (MIT). Demory has been studying 55 Cancri e since the beginning of his career: “As a Postdoc at MIT I led the discovery of the first transit of 55 Cancri e, and in 2016 my team published the first map of a rocky exoplanet, which was 55 Cancri e.”

    The 2016 result already hinted at the possible presence of an atmosphere around 55 Cancri e. For the current study, Demory conducted an independent analysis of the JWST dataset. He explains: “In the past two years, the space telescope CHEOPS which has been developed and built at the University of Bern, has been key in solving several questions that astrophysicists had about 55 Cancri e. JWST complemented this picture at infrared wavelengths in showing that the super-Earth 55 Cancri e might be surrounded by an atmosphere with a composition consistent with carbon monoxide or carbon dioxide.”

    Super-Hot Super-Earth and Still Cooler Than Expected

    Although 55 Cancri e is similar in composition to the rocky planets in our solar system, describing it as “rocky” could leave the wrong impression. The planet orbits so close to its star (a full orbit lasts 18 hours, compared to the 365 days of our Earth) that its surface must be molten – a deep, bubbling ocean of magma. With such a tight orbit, the planet is also likely to be tidally locked, with a dayside that faces the star at all times and a nightside in perpetual darkness. “The planet is so hot that some of the molten rock should evaporate,” explained Hu.

    Although JWST cannot capture a direct image of 55 Cancri e, it can measure subtle changes in light from the system as the planet orbits the star. The team used JWST’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to measure infrared light originating from the planet. By subtracting the brightness during the secondary eclipse, when the planet is behind the star (starlight only), from the brightness when the planet is right beside the star (light from the star and planet combined), the team was able to calculate the amount of infrared light coming from the dayside of the planet at multiple wavelengths simultaneously.

    The first indication that 55 Cancri could have a substantial atmosphere came from temperature measurements based on its thermal emission, or heat energy given off in the form of infrared light. If the planet is covered in dark molten rock with a thin veil of vaporized rock or no atmosphere at all, the dayside should be around 2200 degrees Celsius.

    “Instead, the MIRI data showed a relatively low temperature of about 1500 degrees Celsius,” said Hu. “This is a very strong indication that energy is being distributed from the dayside to the nightside, most likely by a volatile-rich atmosphere.” While currents of lava can carry some heat around to the nightside, they cannot move it efficiently enough to explain the cooling effect. In fact, the dayside looks several hundred degrees cooler than it should, even if heat is spread evenly around the planet. This makes sense if some of the infrared light emitted by the surface is being absorbed by the atmosphere, and never reaches the telescope.

    Bubbling Magma Ocean

    The team thinks that the gases blanketing 55 Cancri e are bubbling out from the interior. The primary atmosphere would be long gone because of the high temperature and intense radiation from the star. This would be a secondary atmosphere that is continuously replenished by the magma ocean. Magma is not just crystals and liquid rock, there’s a lot of dissolved gas in it, too.

    While 55 Cancri e is far too hot to be habitable, it could provide a unique window for studying interactions between atmospheres, surfaces, and interiors of rocky planets, and perhaps provide insights into the early Earth, Venus, and Mars, which are thought to have been covered in magma oceans far in the past. “Ultimately, we want to understand what conditions make it possible for a rocky planet to sustain a gas-rich atmosphere: the key ingredient for a habitable planet,” said Hu.

    More on this research:

    • Webb Finds Atmosphere on Rocky Exoplanet For the First Time
    • First Atmospheric Discovery on a Rocky Super-Earth

    Reference: “A secondary atmosphere on the rocky Exoplanet 55 Cancri e” by Renyu Hu, Aaron Bello-Arufe, Michael Zhang, Kimberly Paragas, Mantas Zilinskas, Christiaan van Buchem, Michael Bess, Jayshil Patel, Yuichi Ito, Mario Damiano, Markus Scheucher, Apurva V. Oza, Heather A. Knutson, Yamila Miguel, Diana Dragomir, Alexis Brandeker and Brice-Olivier Demory, 8 May 2024, Nature.
    DOI: 10.1038/s41586-024-07432-x

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Astronomy Astrophysics Atmosphere CHEOPS Exoplanet James Webb Space Telescope University of Bern
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Webb Space Telescope Unveils the Strange Split Personality of WASP-39b

    Eternal Day and Night: Webb’s Journey To Understand a Distant World’s Bizarre Atmosphere

    Webb Telescope’s Breakthrough: First Atmospheric Discovery on a Rocky Super-Earth

    Super-Earth Surprise: Webb Finds Atmosphere on Rocky Exoplanet For the First Time

    Fiery 5,000 MPH Winds: Webb Maps Weather on Extreme Exoplanet WASP-43 b

    In Harmonic Rhythm: Deciphering the “Unsolvable Riddle” of a Six-Planet System

    Coolest Rocky Exoplanet Ever: James Webb Reveals Surprising Atmosphere of TRAPPIST-1 C

    Steamy Space Mystery: Webb Telescope Finds Water Vapor, But From a Rocky Planet or Its Star?

    Golden Target: Unique Exoplanet Photobombs CHEOPS Study of Nearby Star System

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells

    Starving Cancer: New Diet Slows Growth of Deadliest Brain Tumors in Mice

    InSight Mission Discovers Chaotic Structure Hidden Inside Mars

    Decades-Old Quantum Puzzle Solved: Graphene Electrons Violate Fundamental Law of Physics

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • The Salmon Superfood You’ve Never Heard Of
    • Billion-Dollar Threat: Could a Tomato From the 90s Stop a Devastating Modern Plague?
    • Astronomers Discover One of the Most Massive Binary Stars in the Galaxy
    • Dark Matter “Wind” May Finally Be Detectable With New Superconducting Tech
    • JWST Detects Puzzling Absence of Water in Strange Planet-Forming Disk
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.