Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Neuromorphic Chip: Artificial Neurons Recognize Biosignals in Real Time
    Technology

    Neuromorphic Chip: Artificial Neurons Recognize Biosignals in Real Time

    By University of ZurichJune 4, 2021No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Neuromorphic Chip
    The neuromorphic chip reliably and precisely detects high-frequency oscillations in previously recorded intracranial EEG. Credit: UZH, ETHZ, USZ

    Zurich scientists have created a neuromorphic chip that identifies seizure-related brainwaves in real time.

    Researchers from Zurich have developed a compact, energy-efficient device made from artificial neurons that is capable of decoding brainwaves. The chip uses data recorded from the brainwaves of epilepsy patients to identify which regions of the brain cause epileptic seizures. This opens up new perspectives for treatment.

    Current neural network algorithms produce impressive results that help solve an incredible number of problems. However, the electronic devices used to run these algorithms still require too much processing power. These artificial intelligence (AI) systems simply cannot compete with an actual brain when it comes to processing sensory information or interactions with the environment in real time.

    Neuromorphic Chip Detects High-Frequency Oscillations

    Neuromorphic engineering is a promising new approach that bridges the gap between artificial and natural intelligence. An interdisciplinary research team at the University of Zurich, the ETH Zurich, and the UniversityHospital Zurich has used this approach to develop a chip based on neuromorphic technology that reliably and accurately recognizes complex biosignals. The scientists were able to use this technology to successfully detect previously recorded high-frequency oscillations (HFOs). These specific waves, measured using an intracranial electroencephalogram (iEEG), have proven to be promising biomarkers for identifying the brain tissue that causes epileptic seizures.

    Complex, Compact, and Energy Efficient

    The researchers first designed an algorithm that detects HFOs by simulating the brain’s natural neural network: a tiny so-called spiking neural network (SNN). The second step involved implementing the SNN in a fingernail-sized piece of hardware that receives neural signals by means of electrodes and which, unlike conventional computers, is massively energy efficient. This makes calculations with a very high temporal resolution possible, without relying on the internet or cloud computing. “Our design allows us to recognize spatiotemporal patterns in biological signals in real time,” says Giacomo Indiveri, professor at the Institute for Neuroinformatics of UZH and ETH Zurich.

    Measuring HFOs in Operating Theaters and Outside of Hospitals

    The researchers are now planning to use their findings to create an electronic system that reliably recognizes and monitors HFOs in real time. When used as an additional diagnostic tool in operating theaters, the system could improve the outcome of neurosurgical interventions.

    However, this is not the only field where HFO recognition can play an important role. The team’s long-term target is to develop a device for monitoring epilepsy that could be used outside of the hospital and that would make it possible to analyze signals from a large number of electrodes over several weeks or months. “We want to integrate low-energy, wireless data communications in the design – to connect it to a cellphone, for example,” says Indiveri. Johannes Sarnthein, a neurophysiologist at University Hospital Zurich, elaborates: “A portable or implantable chip such as this could identify periods with a higher or lower rate of incidence of seizures, which would enable us to deliver personalized medicine.” This research on epilepsy is being conducted at the Zurich Center of Epileptology and Epilepsy Surgery, which is run as part of a partnership between University Hospital Zurich, the Swiss Epilepsy Clinic and the University Children’s Hospital Zurich.

    Reference: “An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG” by Mohammadali Sharifshazileh, Karla Burelo, Johannes Sarnthein and Giacomo Indiveri, 25 May 2021, Nature Communications.
    DOI: 10.1038/s41467-021-23342-2

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Artificial Intelligence Biotechnology Computer Science Electrical Engineering Neuroscience Popular University of Zurich
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Highly-Efficient New Neuromorphic Chip for AI on the Edge

    New Brain-Like Computing Device With Electrochemical “Synaptic Transistors” Simulates Human Learning

    Blind Spots Uncovered at the Intersection of AI and Neuroscience – Dozens of Scientific Papers Debunked

    Human Brain-Like Functions Emerge in Neuromorphic Metallic Nanowire Network

    Neuroscientist: Animal Brains Key for Next Generation of Artificial Intelligence

    New AI System Identifies Personality Traits from Eye Movements

    TrueNorth Computer Chip Emulates Human Cognition

    Neuromorphic Chips: Microchips that Imitate the Brain

    AI Framework Predicts Better Patient Health Care and Reduces Cost

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Inexpensive New Liquid Battery Could Replace $10,000 Lithium Systems

    New Research Reveals Not All Ultra-Processed Foods Are Bad

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Archaeologists Unearth Europe’s Oldest Naval Artillery on Sunken Royal Ship
    • World’s Oldest Microbial DNA Discovered in Ancient Mammoth Remains
    • The Da Vinci Bloodline: Living Descendants Provide Clues to the Genius’s Genetic Secrets
    • Overworked Brain Cells May Hold the Key to Parkinson’s
    • Breakthrough “Artificial Cartilage” Could Transform Arthritis Treatment
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.