Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Accelerating Prime Editing: Machine Learning Helps Design the Best Fix for a Given Genetic Flaw
    Technology

    Accelerating Prime Editing: Machine Learning Helps Design the Best Fix for a Given Genetic Flaw

    By Wellcome Trust Sanger InstituteFebruary 16, 2023No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Genetic Engineering AI DNA Editing
    A new study published in the journal Nature Biotechnology has used machine learning to accelerate the development of prime editing, a promising gene-editing technology. The study analyzed thousands of DNA sequences introduced into the genome using prime editors, and used the data to train a machine learning algorithm to design the best fix for a given genetic flaw. By using machine learning to streamline the process of designing genetic fixes, this research could help speed up efforts to bring prime editing into clinical use.

    Researchers enhanced prime editing by using machine learning to predict DNA sequence insertion success. This innovation aims to reduce trial and error in editing, facilitating efforts to treat genetic diseases like cancer and cystic fibrosis.

    Researchers at the Wellcome Sanger Institute have developed a new tool to predict the chances of successfully inserting a gene-edited sequence of DNA into the genome of a cell, using a technique known as prime editing. An evolution of CRISPR-Cas9 gene editing technology, prime editing has huge potential to treat genetic diseases in humans, from cancer to cystic fibrosis. But thus far, the factors determining the success of edits are not well understood.

    The study, published today (February 16, 2023) in the journal Nature Biotechnology, assessed thousands of different DNA sequences introduced into the genome using prime editors. These data were then used to train a machine learning algorithm to help researchers design the best fix for a given genetic flaw, which promises to speed up efforts to bring prime editing into the clinic.

    Advancements in Gene Editing Technology

    Developed in 2012, CRISPR-Cas9 was the first easily programmable gene editing technology.[1] These ‘molecular scissors’ enabled researchers to cut DNA at any position in the genome in order to remove, add or alter sections of the DNA sequence. The technology has been used to study which genes are important for various conditions, from cancer to rare diseases, and to develop treatments that fix or turn off harmful mutations or genes.

    Base editors were an innovation expanding on CRISPR-Cas9 and were called ‘molecular pencils’ for their ability to substitute single bases of DNA. The latest gene editing tools, created in 2019, are called prime editors. Their ability to perform search and replace operations directly on the genome with a high degree of precision has led to them being dubbed ‘molecular word processors’.

    The ultimate aim of these technologies is to correct harmful mutations in people’s genes.[2] Over 16,000 small deletion variants – where a small number of DNA bases have been removed from the genome – have been causally linked to disease. This includes cystic fibrosis, where 70 percent of cases are caused by the deletion of just three DNA bases. In 2022, base edited T-cells were successfully used to treat a patient’s leukemia, where chemotherapy and bone marrow transplant had failed.

    In this new study, researchers at the Wellcome Sanger Institute designed 3,604 DNA sequences of between one and 69 DNA bases in length. These sequences were inserted into three different human cell lines, using different prime editor delivery systems in various DNA repair contexts.[3] After a week, the cells were genome sequenced to see if the edits had been successful or not.

    The insertion efficiency, or success rate, of each sequence was assessed to determine common factors in the success of each edit. The length of sequence was found to be a key factor, as was the type of DNA repair mechanism involved.

    Jonas Koeppel, first author of the study from the Wellcome Sanger Institute, said: “The variables involved in successful prime edits of the genome are many, but we’re beginning to discover what factors improve the chances of success. Length of sequence is one of these factors, but it’s not as simple as the longer the sequence the more difficult it is to insert. We also found that one type of DNA repair prevented the insertion of short sequences, whereas another type of repair prevented the insertion of long sequences.”

    Machine Learning Models for Genome Editing

    To help make sense of these data, the researchers turned to machine learning to detect patterns that determine insertion success, such as length and the type of DNA repair involved. Once trained on the existing data, the algorithm was tested on new data and was found to accurately predict insertion success.

    Juliane Weller, a first author of the study from the Wellcome Sanger Institute, said: “Put simply, several different combinations of three DNA letters can encode for the same amino acid in a protein. That’s why there are hundreds of ways to edit a gene to achieve the same outcome at the protein level. By feeding these potential gene edits into a machine learning algorithm, we have created a model to rank them on how likely they are to work. We hope this will remove much of the trial and error involved in prime editing and speed up progress considerably.”

    The next steps for the team will be to make models for all known human genetic diseases to better understand if and how they can be fixed using prime editing. This will involve other research groups at the Sanger Institute and its collaborators.

    Dr. Leopold Parts, senior author of the study from the Wellcome Sanger Institute, said: “The potential of prime editing to improve human health is vast, but first we need to understand the easiest, most efficient and safest ways to make these edits. It’s all about understanding the rules of the game, which the data and tool resulting from this study will help us to do.”

    Notes

    1. More information on CRISPR-Cas9 is available on the YourGenome website.
    2. The most advanced CRISPR-Cas9 clinical trial is a treatment for sickle cell disease. Red blood cells from patients are edited to turn on the gene that produces fetal hemoglobin, which unlike adult hemoglobin is not affected by the damaging sickle cell mutation. More information on current clinical trials can be found here.
    3. All forms of gene editing technology rely on the intrinsic DNA repair mechanisms of the cell to re-join DNA strands after an edit has been made. Human cell lines are colonies of human cells grown in the laboratory and are used to model complex biological systems.

    Reference: “Sequence and DNA repair determinants of writing short sequences into the genome using prime editing” by Jonas Koeppel, Juliane Weller, Elin Madli Peets, Ananth Pallaseni, Ivan Kuzmin, Uku Raudvere, Hedi Peterson, Fabio Giuseppe Liberante and Leopold Parts, 16 February 2023, Nature Biotechnology.
    DOI: 10.1038/s41587-023-01678-y

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Biotechnology DNA Genetics Machine Learning Wellcome Trust Sanger Institute
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Rapid Disease Diagnosis: Bioengineering Breakthrough Boosts DNA Detection Sensitivity by 100x

    New DNA-Based Microfluidic Chip Can Be Programmed To Solve Complex Math Problems

    High Capacity DNA Data Storage: Could All Your Digital Photos Be Stored As DNA?

    iGenomics: The World’s First DNA “Tricorder” in Your Pocket

    Database Will Integrate Data From Clinical Testing Labs & Literature

    New Genome Interpreter Aims to Address Privacy Concerns and Aid Clinicians

    Faster Whole-Genome Sequencing May Lead to Routine Use in Neonatal Intensive Care

    DNA Storage Record Broken: 1 Gram Could Hold As Much as 455 Exabytes

    Police Can Now Identify Your Eye Color from DNA

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Cornell Scientists Unlock the Secret to Age-Defying Weight Control

    Rewriting Chemical Rules: Researchers Accidentally Create Unprecedented New Gold Compound

    “A Bad Day at Sea”: Researchers Reveal How Rogue Waves Really Form

    Webb Telescope Spots Sparkling Crystals and Life’s Ingredients in the Butterfly Nebula

    Scientists Develop 4-in-1 Drug for Weight Loss With Fewer Side Effects

    Omega-3 Deficiency May Explain Why Alzheimer’s Hits Women Harder

    The Secret Science That Could Change Chocolate Forever

    “Heavy” Electrons Hold the Key to a New Type of Quantum Computer

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Tiny 3D-Printed Device Supercharges Tissue Engineering With Unprecedented Precision
    • Mysterious New Bacteria Discovered in the Amazon Raises Global Health Questions
    • A Simple Spark That May Explain How Life Began
    • CERN Deploys Cutting-Edge AI in “Impossible” Hunt for Higgs Decay
    • “It’s Its Own New Thing” – Scientists Discover New State of Quantum Matter
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.