Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Scientists Use Photons to Engineering Interaction Between Qubits
    Physics

    Scientists Use Photons to Engineering Interaction Between Qubits

    By Peter Reuell, Harvard Staff WriterDecember 16, 20181 Comment5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit

    Researchers Use Photons to Engineer Interactions

    In the world of quantum computing, interaction is everything.

    For computers to work at all, bits — the ones and zeros that make up digital information — must be able to interact and hand off data for processing. The same goes for the quantum bits, or qubits, that make up quantum computers.

    But that interaction creates a problem — in any system in which qubits interact with each other, they also tend to want to interact with their environment, resulting in qubits that quickly lose their quantum nature.

    To get around the problem, Graduate School of Arts and Sciences Ph.D. student Ruffin Evans turned to particles mostly known for their lack of interactions — photons.

    Working in the lab of Mikhail Lukin, the George Vasmer Leverett Professor of Physics and co-director of the Quantum Science and Engineering Initiative, Evans is the lead author of a study, described in the journal Science, that demonstrates a method for engineering an interaction between two qubits using photons.

    “It’s not hard to engineer a system with very strong interactions, but strong interactions can also cause noise and interference through interaction with the environment,” Evans said. “So you have to make the environment extremely clean. This is a huge challenge. We are operating in a completely different regime. We use photons, which have weak interactions with everything.”

    Evans and colleagues began by creating two qubits using silicon-vacancy centers — atomic-scale impurities in diamonds — and putting them inside a nano-scale device known as a photonic crystal cavity, which behaves like two facing mirrors.

    “The chance that light interacts with an atom in a single pass might be very, very small, but once the light bounces around 10,000 times, it will almost certainly happen,” he said. “So one of the atoms can emit a photon, and it will bounce around between these mirrors, and at some point, the other atom will absorb the photon.”

    The transfer of that photon doesn’t go only one way, though.

    “The photon is actually exchanged several times between the two qubits,” Evans said. “It’s like they’re playing hot potato; the qubits pass it back and forth.”

    While the notion of creating interaction between qubits isn’t new — researchers have managed the feat in a number of other systems — there are two factors that make the new study unique, Evans said.

    “The key advance is that we are operating with photons at optical frequencies, which are usually very weakly interacting,” he said. “That’s exactly why we use fiber optics to transmit data — you can send light through a long fiber with basically no attenuation. So our platform is especially exciting for long-distance quantum computing or quantum networking.”

    And though the system operates only at ultra-low temperatures, Evans said it is less complex than approaches that require elaborate systems of laser cooling and optical traps to hold atoms in place. Because the system is built at the nanoscale, he added, it opens the possibility that many devices could be housed on a single chip.

    “Even though this sort of interaction has been realized before, it hasn’t been realized in solid-state systems in the optical domain,” he said. “Our devices are built using semiconductor fabrication techniques. It’s easy to imagine using these tools to scale up to many more devices on a single chip.”

    Evans envisions two main directions for future research. The first involves developing ways to exert control over the qubits and building a full suite of quantum gates that would allow them to function as a workable quantum computer.

    “The other direction is to say we can already build these devices, and take information, read it out of the device and put it in an optical fiber, so let’s think about how we scale this up and actually build a real quantum network over human-scale distances,” he said. “We’re envisioning schemes to build links between devices across the lab or across campus using the ingredients we already have, or using next-generation devices to realize a small-scale quantum network.”

    Ultimately, Evans said, the work could have wide-reaching impacts on the future of computing.

    “Everything from a quantum internet to quantum data centers will require optical links between quantum systems, and that’s the piece of the puzzle that our work is very well-suited for,” he said.

    In addition to Evans and Lukin, the study represented a collaboration with Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering, and Hongkun Park, the Mark Hyman, Jr. Professor of Chemistry and Professor of Physics.

    “We feel that these kinds of collaborations will create a backbone of the new Harvard Quantum Initiative for Science and Engineering,” Lukin said.

    Reference: “Photon-mediated interactions between quantum emitters in a diamond nanocavity” by R. E. Evans, M. K. Bhaskar, D. D. Sukachev, C. T. Nguyen, A. Sipahigil, M. J. Burek, B. Machielse, G. H. Zhang, A. S. Zibrov, E. Bielejec, H. Park, M. Lončar And M. D. Lukin, 20 September 2018, Science.
    DOI: 10.1126/science.aau4691

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Quantum Computing Qubits
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Physicists Develop Data Bus for Quantum Computers

    New Simple Device Uses Sound Waves to Store Quantum Information

    Engineers Develop a Radical New Architecture for Quantum Computing

    Yale Researchers Cross the “Break Even” Point in Preserving a Bit of Quantum Information

    Researchers Develop A Universal Quantum Gate

    Researchers Develop a New Quantum Error Correcting Code

    Physicists Track Quantum Errors in Real Time

    Physicists Create and Control a Large Quantum Mechanical System Built on Photons

    Quantum Bits Store Data for Nearly Two Seconds Using Laboratory Grown Diamonds

    1 Comment

    1. Daurrie Kesslyn on January 19, 2019 2:35 pm

      Is there as a way to measure dark matter with quantum qubits, (dark matter in spins’ space)?
      https://www.nextplatform.com/2018/02/20/quantum-computing-performance-glass/

      IBM offers a peek at the future of quantum computing with the Q System One
      X-ray pulse detected near event horizon as black hole devours star
      Black holes: The ultimate cosmic whisks
      chip cone quantum computation podcast ~~~ Comprehension framed by “Torus” ~~ A quantum qubit is a comprehension unit of time-duality, phase-conic-dits. _shape-memory_
      Stupid Qubit – Quantum Computing for the Clueless (episode 001)

      Artificial Intelligence And National Security- The Importance Of The AI Ecosystem

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    The U.S. Is Sitting on a Goldmine of Critical Minerals – but They’re Being Thrown Away

    The Salmon Superfood You’ve Never Heard Of

    New Smart Pimple Patch Clears Acne in Just 7 Days

    Something From Nothing – Physicists Mimic the “Impossible” Schwinger Effect

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Universe’s First Magnetic Fields Were As Weak as Human Brain Waves
    • Our Galaxy’s Sweet Spot for Life Is Bigger Than We Thought
    • “Rogue” DNA Rings Expose Brain Cancer’s Earliest Secrets
    • 40-Year Medical Mystery Solved: Why Smoking Helps Ulcerative Colitis
    • New Breath Test Detects Diabetes in Minutes
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.