“Blue” Hydrogen Is Supposed To Be Clean Energy, but May Actually Be Worse Than Gas and Coal

Hydrogen Fuel

According to new research, creating blue hydrogen produces a carbon footprint over 20% larger than using natural gas or coal directly for heat, and about 60% larger than using diesel oil for heat.

“Blue” hydrogen – an energy source that involves a process for making hydrogen by using methane in natural gas – is being lauded by many as a clean, green energy to help reduce global warming. However Cornell and Stanford University researchers believe it may harm the climate more than burning fossil fuel.

The carbon footprint to create blue hydrogen is more than 20% greater than using either natural gas or coal directly for heat, or about 60% greater than using diesel oil for heat, according to new research published August 12 in Energy Science & Engineering.

“Most of the hydrogen in the U.S. and Europe comes from natural gas, using steam and pressure to convert the methane from natural gas into a so-called ‘gray’ hydrogen and carbon dioxide,” said Robert Howarth, the David R. Atkinson Professor of Ecology and Environmental Biology in the College of Agriculture and Life Sciences. Howarth, together with Mark Z. Jacobson, Stanford professor of civil and environmental engineering, authored “How Green is Blue Hydrogen?”

Blue hydrogen starts with converting methane to hydrogen and carbon dioxide by using heat, steam, and pressure, or gray hydrogen, but goes further to capture some of the carbon dioxide. Once the byproduct carbon dioxide and the other impurities are sequestered, it becomes blue hydrogen, according to the U.S. Department of Energy.

The process of making blue hydrogen takes a large amount of energy, according to the researchers, which is generally provided by burning more natural gas.

“In the past, no effort was made to capture the carbon dioxide byproduct of gray hydrogen, and the greenhouse gas emissions have been huge,” Howarth said. “Now the industry promotes blue hydrogen as a solution, an approach that still uses the methane from natural gas, while attempting to capture the byproduct carbon dioxide. Unfortunately, emissions remain very large.”

Methane is a powerful greenhouse gas, Howarth said. It is more than 100 times stronger as an atmospheric warming agent than carbon dioxide when first emitted. The United Nations’ Intergovernmental Panel on Climate Change released on August 9 shows that cumulatively to date over the past century, methane has contributed about two-thirds as much to global warming as carbon dioxide has, he said.

Considering both the uncaptured carbon dioxide and the large emissions of unburned, so-called “fugitive” methane emissions inherent in using natural gas, the carbon footprint to create blue hydrogen is more than 20% greater than burning either natural gas or coal directly for heat, or about 60% greater than using diesel oil for heat, according to the new paper.

Emissions of blue hydrogen are less than for gray hydrogen, but not greatly so: perhaps surprisingly, only by about 9% to 12%.

“Blue hydrogen is hardly emissions free,” wrote the researchers. “Blue hydrogen as a strategy only works to the extent it is possible to store carbon dioxide long-term indefinitely into the future without leakage back to the atmosphere.”

An ecologically friendly “green” hydrogen does exist, but it remains a small sector and it has not been commercially realized. Green hydrogen is achieved when water goes through electrolysis (with electricity supplied by solar, wind or hydroelectric power) and the water is separated into hydrogen and oxygen.

On August 10, the U.S. Senate passed its version of the $1 trillion Infrastructure Investment and Jobs Act, which includes several billion dollars to develop, subsidize and strengthen hydrogen technology and its industry.

“Political forces may not have caught up with the science yet,” Howarth said. “Even progressive politicians may not understand for what they’re voting. Blue hydrogen sounds good, sounds modern and sounds like a path to our energy future. It is not.”

Said Howarth: “The best hydrogen, the green hydrogen derived from electrolysis – if used wisely and efficiently – can be that path to a sustainable future. Blue hydrogen is totally different.”

Reference: “How green is blue hydrogen?” by Robert W. Howarth and Mark Z. Jacobson, 12 August 2021, Energy Science & Engineering.
DOI: 10.1002/ese3.956

This research was supported by a grant from the Park Foundation. Howarth is a fellow at the Cornell Atkinson Center for Sustainability.

4 Comments on "“Blue” Hydrogen Is Supposed To Be Clean Energy, but May Actually Be Worse Than Gas and Coal"

  1. Zack the Physicist | August 16, 2021 at 9:55 am | Reply

    Natural gas has been a commonly used for producing hydrogen (H2), but it does not mean one must stick with that old polluting technology forever. Faraday’s experiments proved that already in the 1830’s, but authors completely fail to notice that.

    You can produce H2 with electrolysis, just by applying electric current to salty water, and emissions are pure oxygen (O2) and H2. Oceans are full of salty water (no need for extra chemicals), just add electric current and metallic cathone and anode …

  2. A bit of googling is revealing a lot of small new companies vying to get big in green hydrogen while the fossil companies are playing up blue hydrogen and playing down the CO2 aspect. It almost reminds me of the hundreds of silicon valley chip companies in the early years of the 70s before Intel was even worth $1B.

    The Norwegian NEL Hydrogen company gives some data on its electrolyzers
    Their MC250 1.25MW unit makes 1kg with 50kWh of electricty.The net production rate is 531kg/day which is closer to 1.11MW and is about 66% eff.

    So 1300 of these NEL 1.25MW units also makes 1GW of H2 power 24/365. Wonder what the cost is? Some research says current PEM stacks are about $1500/kW but are expected to fall to $400/kW in the next decade. So at 1GW scale the future cost could be $400M to match to a 1GWe power plant which would be remarkable. NEL is currently building up their PEM plant capacity in Norway GIGA factory style and expecting to quarter the PEM plant cost as volume increases.

    NEL is also colaborating with a 3GW NY nuclear power plant and the DOE and others to consider taking nuclear steam and turning to hydrogen at GW scale.

    By 2025 NEL expects to get to $1.5/kg about the same cost of grey steam reformed nat gas hydrogen using so called green renewable energy but they don’t say how intermittent energy is going to become baseload.

    The current largest electrolyzer in the world is in Canada but is only 20MW PEM but gets its power from hydro making 8tons/day.

    The whole industry is talking up huge increases in these PEM cells to crossover fossil fuels prices in the next decade.

    In the mean time with all these different colored hydrogen processes I propose red hydrogen as that made from nuclear heat and split with the Sulfur Iodine process, or it could be yellow hydrogen after the sulfur color.

    This Blue hydrogen story seems to be spreading like widfire though around the web.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.