Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»New Approach Uses Mathematics to Improve Automated Security Monitoring
    Technology

    New Approach Uses Mathematics to Improve Automated Security Monitoring

    By Helen Knight, Massachusetts Institute of TechnologyJune 6, 2012No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Security Surveillance Monitor
    MIT researchers have developed a new mathematical approach to enhance security surveillance, eliminating human error and fatigue. This system achieves faster and more accurate analysis by balancing speed and precision.

    In an effort to remove human error and fatigue from security surveillance, researchers at MIT have created a new approach using mathematics. The system can perform an analysis more accurately and in a fraction of the time it would take a human camera operator by reaching a compromise between accuracy and speed.

    Police and security teams guarding airports, docks, and border crossings from terrorist attack or illegal entry need to know immediately when someone enters a prohibited area, and who they are. A network of surveillance cameras is typically used to monitor these at-risk locations 24 hours a day, but these can generate too many images for human eyes to analyze.

    Now a system being developed by Christopher Amato, a postdoc at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), can perform this analysis more accurately and in a fraction of the time it would take a human camera operator. “You can’t have a person staring at every single screen, and even if you did the person might not know exactly what to look for,” Amato says. “For example, a person is not going to be very good at searching through pages and pages of faces to try to match [an intruder] with a known criminal or terrorist.”

    Existing computer vision systems designed to carry out this task automatically tend to be fairly slow, Amato says. “Sometimes it’s important to come up with an alarm immediately, even if you are not yet positive exactly what it is happening,” he says. “If something bad is going on, you want to know about it as soon as possible.”

    So Amato and colleagues Komal Kapoor, Nisheeth Srivastava, and Paul Schrater at the University of Minnesota are developing a system that uses mathematics to reach a compromise between accuracy — so the system does not trigger an alarm every time a cat walks in front of the camera, for example — with the speed needed to allow security staff to act on an intrusion as quickly as possible.

    For camera-based surveillance systems, operators typically have a range of different computer vision algorithms they could use to analyze the video feed. These include skin detection algorithms that can identify a person in an image, or background detection systems that detect unusual objects, or when something is moving through the scene.

    To decide which of these algorithms to use in a given situation, Amato’s system first carries out a learning phase, in which it assesses how each piece of software works in the type of setting in which it is being applied, such as an airport. To do this, it runs each of the algorithms on the scene, to determine how long it takes to perform an analysis, and how certain it is of the answer it comes up with. It then adds this information to its mathematical framework, known as a partially observable Markov decision process (POMDP).

    Then, for any given situation — if it wants to know if an intruder has entered the scene, for example — the system can decide which of the available algorithms to run on the image, and in which sequence, to give it the most information in the least amount of time. “We plug all of the things we have learned into the POMDP framework, and it comes up with a policy that might tell you to start out with a skin analysis, for example, and then depending what you find out you might run an analysis to try to figure out who the person is, or use a tracking system to figure out where they are [in each frame],” Amato says. “And you continue doing this until the framework tells you to stop, essentially, when it is confident enough in its analysis to say there is a known terrorist here, for example, or that nothing is going on at all.”

    Like a human detective, the system can also take context into account when analyzing a set of images, Amato says. So for instance, if the system is being used at an airport, it could be programmed to identify and track particular people of interest, and to recognize objects that are strange or in unusual locations, he says. It could also be programmed to sound an alarm whenever there are any objects or people in the scene, when there are too many objects, or if the objects are moving in ways that give cause for concern.

    In addition to port and airport security, the system could monitor video information obtained by a fleet of unmanned aircraft, Amato says. It could also be used to analyze data from weather monitoring sensors to determine where tornados are likely to appear, or information from water samples taken by autonomous underwater vehicles, he says. The system would determine how to obtain the information it needs in the least amount of time and with the least possible number of sensors.

    Matthijs Spaan, an artificial intelligence researcher at Delft University of Technology in the Netherlands, says the work demonstrates how artificial intelligence decision-making techniques can benefit data-intensive applications such as automated video surveillance. “Video processing has high computational demands, and the work shows how POMDPs can be applied to dynamically trade off computation cost with prediction accuracy,” he says. “The POMDP model excels at decision-making regarding uncertain information, in this case, whether an intruder is present or not.”

    Amato and his colleagues will present their system in a paper at the 24th IAAI Conference on Artificial Intelligence in Toronto in July.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Artificial Intelligence Computer Science Mathematics MIT Security
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    New System for Performing “Tensor Algebra” Offers Faster Big-Data Analysis

    New Debugging Method Finds 23 Undetected Security Flaws in Popular Web Applications

    “Data Science Machine” Replaces Human Intuition with Algorithms

    Algorithm Analyzes Information From Medical Images to Identify Disease

    Halide, A New and Improved Programming Language for Image Processing Software

    New Algorithm Enables Wi-Fi Connected Vehicles to Share Data

    New Programming System Could Help Prevent Information Leaks

    Algorithm Enables Robots to Learn and Adapt to Help Complete Tasks

    Mathematical Framework Formalizes Loop Perforation Technique

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Restricted Blood Flow Supercharges Cancer Growth, Study Finds

    First Ever Dinosaur-Era Dragonfly Fossil Discovered in Canada

    New Fossils Reveal Humans’ Mysterious Lost Cousin

    These 3 Simple Lifestyle Changes Can Cut Diabetes Risk by 31%

    These Simple Everyday Treatments Offer Drug-Free Relief for Knee Arthritis

    30-Year-Old Climate Predictions Were Shockingly Accurate, Study Finds

    Could Glucose Be the Key to Next-Generation Cancer Treatments?

    The Sun’s Hidden Threads Revealed in Stunning Solar Flare Images

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Rewriting Chemical Rules: Researchers Accidentally Create Unprecedented New Gold Compound
    • The Bright Yellow Worm That Survives by Turning Poison Into “Gold”
    • “A Bad Day at Sea”: Researchers Reveal How Rogue Waves Really Form
    • Scientists Have Uncovered When Jupiter Was Born, Solving a Longstanding Mystery
    • Astronomers Uncover “Mysterious Giant” Lurking Behind Binary Black Holes
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.