Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Health»New Nanomedicine Inhibits the Progression of Pancreatic Cancer
    Health

    New Nanomedicine Inhibits the Progression of Pancreatic Cancer

    By Tel Aviv UniversityJanuary 2, 2018No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Novel Nanomedicine Inhibits the Progression of Pancreatic Cancer in Mouse Models
    Researchers found a link between a cancer-promoting gene and an oncosuppressor microRNA, which may explain why some pancreatic cancer patients have longer survival times. This discovery could lead to the development of drugs for pancreatic and other cancers.

    A new Tel Aviv University study pinpoints the inverse correlation between a known oncogene — a gene that promotes the development of cancer — and the expression of an oncosuppressor microRNA as the reason for extended pancreatic cancer survival. The study may serve as a basis for the development of an effective cocktail of drugs for this deadly disease and other cancers.

    The study, which was published in Nature Communications, was led by Prof. Ronit Satchi-Fainaro, Chair of the Department of Physiology and Pharmacology at TAU’s Sackler Faculty of Medicine, and conducted by Hadas Gibori and Dr. Shay Eliyahu, both of Prof. Satchi-Fainaro’s multidisciplinary laboratory, in collaboration with Prof. Eytan Ruppin of TAU’s Computer Science Department and the University of Maryland and Prof. Iris Barshack and Dr. Talia Golan of Chaim Sheba Medical Center, Tel Hashomer.

    Pancreatic cancer is among the most aggressive cancers known today. The overwhelming majority of pancreatic cancer patients die within just a year of diagnosis. “Despite all the treatments afforded by modern medicine, some 75% of all pancreatic cancer patients die within 12 months of diagnosis, including many who die within just a few months,” Prof. Satchi-Fainaro says.

    “But around seven percent of those diagnosed will survive more than five years. We sought to examine what distinguishes the survivors from the rest of the patients,” Prof. Satchi-Fainaro continues. “We thought that if we could understand how some people live several years with this most aggressive disease, we might be able to develop a new therapeutic strategy.”

    Calling a nano-taxi

    The research team examined pancreatic cancer cells and discovered an inverse correlation between the signatures of miR-34a, a tumor suppressant, and PLK1, a known oncogene. The levels of miR-34a were low in pancreatic cancer mouse models, while the levels of the oncogene were high. This correlation made sense for such an aggressive cancer. But the team needed to see if the same was true in humans.

    The scientists performed RNA profiling and analysis of samples taken from pancreatic cancer patients. The molecular profiling revealed the same genomic pattern found earlier in mouse models of pancreatic cancer.

    The scientists then devised a novel nanoparticle that selectively delivers genetic material to a tumor and prevents side effects in surrounding healthy tissues.

    “We designed a nanocarrier to deliver two passengers: (1) miR-34a, which degrades hundreds of oncogenes; and (2) a PLK1 small interfering RNA (siRNA), that silences a single gene,” Prof. Satchi-Fainaro says. “These were delivered directly to the tumor site to change the molecular signature of the cancer cells, rendering the tumor dormant or eradicating it altogether.

    “The nanoparticle is like a taxi carrying two important passengers,” Prof. Satchi-Fainaro continues. “Many oncology protocols are cocktails, but the drugs usually do not reach the tumor at the same time. But our ‘taxi’ kept the ‘passengers’ — and the rest of the body — safe the whole way, targeting only the tumor tissue. Once it ‘parked,’ an enzyme present in pancreatic cancer caused the carrier to biodegrade, allowing the therapeutic cargo to be released at the correct address — the tumor cells.”

    Improving the odds

    To validate their findings, the scientists injected the novel nanoparticles into pancreatic tumor-bearing mice and observed that by balancing these two targets — bringing them to a normal level by increasing their expression or blocking the gene responsible for their expression — they significantly prolonged the survival of the mice.

    “This treatment takes into account the entire genomic pattern, and shows that affecting a single gene is not enough for the treatment of pancreatic cancer or any cancer type in general,” according to Prof. Satchi-Fainaro.

    Reference: “Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer” by Hadas Gibori, Shay Eliyahu, Adva Krivitsky, Dikla Ben-Shushan, Yana Epshtein, Galia Tiram, Rachel Blau, Paula Ofek, Joo Sang Lee, Eytan Ruppin, Limor Landsman, Iris Barshack, Talia Golan, Emmanuelle Merquiol, Galia Blum and Ronit Satchi-Fainaro, 2 January 2018, Nature Communications.
    DOI: 10.1038/s41467-017-02283-9

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Cancer Medicine Nanoparticles Nanoscience Pharmacology Tel-Aviv University
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    How Tomatoes and Potatoes Could Be Used To Treat Cancer

    Scientists Study “Magical” Royal Jelly for Clues to Control Cancer

    New Nanoparticles Cross the Blood-Brain Barrier and Shrink Glioblastoma Tumors

    New Research Shows Cellular Clean-Up Can Also Sweep Away Forms of Cancer

    MIT Develops New Model To Speed Up Colon Cancer Research

    Scientists Develop a New Way to Deliver MicroRNAs for Cancer Treatment

    Bioadhesive Nanoparticles Help Protect Your Skin From the Sun

    Pharmaceutical Firms “Underinvest” in Long-Term Cancer Research

    Diabetes Medication Could Be Used to Reduce Tumor Growth

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    The U.S. Is Sitting on a Goldmine of Critical Minerals – but They’re Being Thrown Away

    The Salmon Superfood You’ve Never Heard Of

    New Smart Pimple Patch Clears Acne in Just 7 Days

    Something From Nothing – Physicists Mimic the “Impossible” Schwinger Effect

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Solar Flares Are 6.5 Times Hotter Than We Thought
    • Universe’s First Magnetic Fields Were As Weak as Human Brain Waves
    • Our Galaxy’s Sweet Spot for Life Is Bigger Than We Thought
    • “Rogue” DNA Rings Expose Brain Cancer’s Earliest Secrets
    • 40-Year Medical Mystery Solved: Why Smoking Helps Ulcerative Colitis
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.