Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»First View of Hydrogen Atoms at the Metal-to-Metal Hydride Interface
    Chemistry

    First View of Hydrogen Atoms at the Metal-to-Metal Hydride Interface

    By University of GroningenJanuary 31, 20201 Comment5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Hydrogen and Titanium Atoms in Titanium Hydride
    This picture shows three images of titanium hydride. Left: high-angle annular dark-field (HAADF). Middle: the new technique described in the paper, showing both titanium and hydrogen atoms (marked blue and red respectively) Right: Contrast-inverted annular bright-field. Credit: deGraaf et al, University of Groningen

    University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope. Using a new technique, they succeeded in visualizing both the metal and the hydrogen atoms in a single image, allowing them to test different theoretical models that describe the interface structure. The results were published today (January 31, 2020) in the journal Science Advances.

    To understand the properties of materials, it is often vital to observe their structure at an atomic resolution. Visualizing atoms using a transmission electron microscope (TEM) is possible; however, so far, no one has succeeded in producing proper images of both heavy atoms and the lightest one of all (hydrogen) together. This is exactly what University of Groningen Professor of Nanostructured Materials Bart Kooi and his colleagues have done. They used a new TEM with capabilities that made it possible to produce images of both titanium and hydrogen atoms at the titanium/titanium hydride interface.

    Hydrogen atoms

    The resulting pictures show how columns of hydrogen atoms fill spaces between the titanium atoms, distorting the crystal structure. They occupy half of the spaces, something which was predicted earlier. ‘In the 1980s, three different models were proposed for the position of hydrogen at the metal/metal hydride interface,’ says Kooi. ‘We were now able to see for ourselves which model was correct.’

    New TEM University of Groningen
    This picture shows the new TEM from Thermo Fisher Scientific at the University of Groningen. Credit: University of Groningen

    To create the metal/metal hydride interface, Kooi and his colleagues started out with titanium crystals. Atomic hydrogen was then infused and penetrated the titanium in very thin wedges, forming tiny metal hydride crystals. ‘In these wedges, the numbers of hydrogen and titanium atoms are the same,’ Kooi explains. ‘The penetration of hydrogen creates a high pressure inside the crystal. The very thin hydride plates cause hydrogen embrittlement in metals, for example inside nuclear reactors.’ The pressure at the interface prevents the hydrogen from escaping.

    Innovations

    Producing images of the heavy titanium and the light hydrogen atoms at the interface was quite a challenge. First, the sample was loaded with hydrogen. It should subsequently be viewed in a specific orientation along the interface. This was achieved by cutting properly aligned crystals from titanium using an ion beam and making the samples thinner — to a thickness of no more than 50 nm —again using an ion beam.

    New TEM Control Room
    This is a picture from the control room of the new TEM by Thermo Fisher Scientific at the University of Groningen, with Prof. Dr. Bart Kooi in the background. Credit: University of Groningen

    The visualization of both titanium and hydrogen atoms was made possible by several innovations that were included in the TEM. Heavy atoms can be visualized by the scattering that they cause of the electrons in the microscope beam. Scattered electrons are preferably detected using high-angle detectors. ‘Hydrogen is too light to cause this scattering, so for these atoms, we have to rely on constructing the image from low-angle scattering, which includes electron waves.’ However, the material causes interference of these waves, which has so far made the identification of hydrogen atoms almost impossible.

    Computer simulations

    The waves are detected by a low-angle bright-field detector. The new microscope has a circular bright-field detector that is divided into four segments. By analyzing differences in the wavefronts detected in opposing segments and looking at the changes that occur when the scanning beam crosses the material, it is possible to filter out the interferences and visualize the very light hydrogen atoms.

    ‘The first requirement is to have a microscope that can scan with an electron beam that is smaller than the distance between the atoms. It is subsequently the combination of the segmented bright-field detector and the analytical software that makes visualization possible,’ explains Kooi, who worked in close collaboration with scientists from the microscope’s manufacturer, Thermo Fisher Scientific, two of whom are co-authors on the paper. Kooi’s group added various noise filters to the software and tested them. They also performed extensive computer simulations, against which they compared the experimental images.

    Nanomaterials

    The study shows the interaction between the hydrogen and the metal, which is useful knowledge for the study of materials capable of storing hydrogen. ‘Metal hydrides can store more hydrogen per volume than liquid hydrogen.’ Furthermore, the techniques used to visualize the hydrogen could also be applied to other light atoms, such as oxygen, nitrogen, or boron, which are important in many nanomaterials. ‘Being able to see light atoms next to heavy ones opens up all kinds of opportunities.’

    Reference: “Resolving hydrogen atoms at metal-metal hydride interfaces” by Sytze deGraaf, Jamo Momand, Christoph Mitterbauer, Sorin Lazar and Bart J. Kooi, 31 January 2020, Science Advances.
    DOI: 10.1126/sciadv.aay4312

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Materials Science Nanomaterials Optics University of Groningen
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Chemists Invent Shape-Shifting Nanomaterial With Intriguing Biomedical Potential

    Green Chemistry Creates Coatings From Nature: Turning Biomass Into High-Quality Coatings

    Near Infrared-Absorbing Hydrocarbon Revealed by Molecular Design Strategy

    Aluminum “Octopods” – Shape Matters for Light-Activated Nanocatalysts

    Elusive New Liquid Phase Found by Scientists After a Century of Searching

    Harvesting Hot Electrons Without Tricks Could Increase Solar Panel Efficiency

    The Fascinating Secret Behind Crystals That Shrink When Heated

    Powerful New Electronics Could Be Created at the Edge of Chaos

    Janus Graft Block Copolymers, A Breakthrough in Nanostructured Materials

    1 Comment

    1. Frosted Flake on March 14, 2021 10:09 am

      Awesome Photo. Thanks very much.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Inexpensive New Liquid Battery Could Replace $10,000 Lithium Systems

    New Research Reveals Not All Ultra-Processed Foods Are Bad

    Lost for a Century: First-Ever Images Reveal Sunken WWI Submarine’s Final Resting Place

    Astronomers Just Found a “Zombie Star” With a Shocking Backstory

    The Famous “Unhappiness Hump” Has Vanished, and Youth Are Paying the Price

    Weight-Loss Drug Mounjaro Shrinks Breast Cancer Tumors in Mice

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • For the First Time in 40 Years, Panama’s Ocean Lifeline Has Vanished
    • The Newly Found Bone Switch That Could Stop Osteoporosis
    • Heart Attacks May Be Infectious and Vaccines Could Prevent Them
    • This Simple Blood Test Might Catch Alzheimer’s Before It Steals Your Memory
    • Archaeologists Unearth Europe’s Oldest Naval Artillery on Sunken Royal Ship
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.