Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Ingredients That Make Vaccines More Effective Could Be Hiding in Small Molecule Libraries
    Chemistry

    Ingredients That Make Vaccines More Effective Could Be Hiding in Small Molecule Libraries

    By Kyoto UniversityOctober 1, 2020No Comments3 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Molecule Vaccine Adjuvant
    The researchers found a molecule that can be used as a vaccine adjuvant and strengthens the immune response when added to a vaccine. Credit: Mindy Takamiya/Kyoto University iCeMS

    Scientists have found an ingredient that makes a vaccine more effective through an approach more often seen in materials science — testing molecules that self-assemble into larger structures.

    Many vaccines include ingredients called adjuvants that help make them more effective by eliciting a stronger immune response. Identifying potential adjuvants just got easier, thanks to an approach described by scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and colleagues in the journal Angewandte Chemie.

    The team of chemists and biologists in Japan report they found a molecule that, when added to a vaccine, strengthens the immune response just as well as a commonly used adjuvant. Vaccine adjuvants are an essential part of clinically used antigen vaccines, such as influenza, hepatitis, and cervical cancer vaccines.

    “Adjuvants generate a robust and long-lasting immune response, but the ones currently in use, like aluminum salts and oil-in-water emulsions, were developed in the 1920s and we don’t precisely understand how they work, which is why they are often called ‘immunologists’ dirty little secret,'” says iCeMS chemical biologist Motonari Uesugi, who led the study.

    The new adjuvant was discovered by screening a library of 8,000 small molecules for their ability to self-assemble. Molecular self-assembly is the spontaneous self-organization of molecules through non-electron-sharing bonds. This is a well-known concept in materials science that is also employed by living organisms to perform complex biological functions.

    “We hypothesized that structures that come together through molecular self-assembly might mimic structures in pathogens, like viruses, stimulating a similar immune response,” says Uesugi.

    The team found 116 molecules that can self-assemble and then screened them for the ability to increase interleukin-6 expression by macrophages. Macrophages are immune cells that detect and ‘eat up’ pathogens circulating in the body. They also release proteins, such as interleukin-6, that activate other immune cells.

    The research led to the discovery of a molecule called cholicamide. This molecule is self-assembled to form a virus-mimicking structure that is engulfed by macrophages and similar immune cells. The structures are transported into specialized vacuoles to combine with a specific receptor called toll-like receptor 7, which sparks a heightened immune response. Specifically, it leads to the release of immune-stimulating cues like interleukin-6.

    Further investigations and comparisons demonstrated that cholicamide was just as potent in inducing an immune response as the adjuvant Alum when added to an influenza vaccine given to mice.

    “Our study, to the best of our knowledge, is the first report of using a small molecule library for vaccine adjuvant discovery,” says Uesugi. “We hope the new approach paves the way for discovering and designing self-assembling small molecule adjuvants against pathogens, including emerging viruses.”

    Further studies are needed to determine how cholicamide mimics the single RNA strands of viruses to activate toll-like receptor 7. The researchers also want to understand how cholicamide binds to the receptor to elucidate the effects of this interaction.

    Reference: “Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants” by Shuyu Jin, Hue Thi Vu, Kou Hioki, Naotaka Noda, Hiroki Yoshida, Toru Shimane, Shigenari Ishizuka, Ippei Takashima, Yoshiyuki Mizuhata, Kathleen Beverly Pe, Tetsuya Ogawa, Naoya Nishimura, Daniel Packwood, Norihiro Tokitoh, Hiroki Kurata, Sho Yamasaki, Ken J Ishii and Motonari Uesugi, 26 September 2020, Angewandte Chemie.
    DOI: 10.1002/anie.202011604

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Biochemistry Biotechnology Cell Biology Kyoto University Vaccine
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Innovative Chemical “Nose” Sniffs Critical Differences in DNA Structures

    A New Twist on DNA Origami: Meta-DNA Structures Transform the DNA Nanotechnology World

    Scientists Copy Nature’s Tricks to Sustainably Make Chemicals and Fuel

    3D-Printing Living Skin With Blood Vessels Included [Video]

    New 3D Printing Technique for Biomaterials a Major Step Forward for Artificial Medical Implants

    Energy Production Unit for a Synthetic Cell Constructed by Scientists

    Biochemists Discover A New Target For Patients With Diabetes

    Algae-Powered Fuel Cells Move a Step Closer to Reality

    Chemists Reveal New Theory For How Life On Earth May Have Begun

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    The Insect Apocalypse Hits Fiji: 79% of Native Ants Are Vanishing

    Are Five Senses Holding Us Back? Scientists Say We Could Use Seven

    Microplastics May Trigger Alzheimer’s-Like Brain Damage

    Mysterious “Universe Breaker” Red Dots Could Be Black Holes in Disguise

    Why Is a Floating Seaweed Taking Over an Entire Ocean? Researchers Have the Answer

    This Special Diet May Slow Brain Aging, Harvard Study Reveals

    Strange Mars Mudstones May Hold the Strongest Clues Yet of Ancient Life

    Scientists Just Found a Way to Simulate the Universe on a Laptop

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Tiny Multicolor Metalenses Could Revolutionize Drone and Phone Cameras
    • New Lensless Camera Sees in 3D Using Ancient Pinhole Tech
    • World’s First “Perovskite Camera” Can See Inside the Human Body
    • Forgotten 130-Year-Old Bottles Reveal Denmark’s Butter Secrets
    • First-Ever Photos Reveal Secretive Giant Rat of New Guinea
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.