A Cheaper and Greener Internet of Things With No Wires Attached

Greener Internet of Things With No Wires Attached

Wirelessly powered electronics developed by KAUST researchers could help to make internet of things technology more environmentally friendly. Credit: © 2022 KAUST; Heno Hwang

Wirelessly powered large-area electronics could enable a cheaper and greener internet of things.

Emerging forms of thin-film device technologies that rely on alternative semiconductor materials, such as printable organics, nanocarbon allotropes, and metal oxides, could contribute to a more economically and environmentally sustainable internet of things (IoT), a KAUST-led international team suggests.

The IoT is set to have a major impact on daily life and many industries. It connects and facilitates data exchange between a multitude of smart objects of various shape and size — such as remote-controlled home security systems, self-driving cars equipped with sensors that detect obstacles on the road, and temperature-controlled factory equipment — over the internet and other sensing and communications networks.

This burgeoning hypernetwork is projected to reach trillions of devices by next decade, boosting the number of sensor nodes deployed in its platforms.

Current approaches used to power sensor nodes rely on battery technology, but batteries need regular replacement, which is costly and environmentally harmful over time. Also, the current global production of lithium for battery materials may not keep up with the increasing energy demand from the swelling number of sensors.

Wirelessly powered sensor nodes could help achieve a sustainable IoT by drawing energy from the environment using so-called energy harvesters, such as photovoltaic cells and radio-frequency (RF) energy harvesters, among other technologies. Large-area electronics could be key in enabling these power sources.

KAUST alumni Kalaivanan Loganathan, with Thomas Anthopoulos and coworkers, assessed the viability of various large-area electronic technologies and their potential to deliver ecofriendly, wirelessly powered IoT sensors.

Large-area electronics have recently emerged as an appealing alternative to conventional silicon-based technologies thanks to significant progress in solution-based processing, which has made devices and circuits easier to print on flexible, large-area substrates. They can be produced at low temperatures and on biodegradable substrates such as paper, which makes them more ecofriendly than their silicon-based counterparts.

Over the years, Anthopoulos’ team has developed a range of RF electronic components, including metal-oxide and organic polymer-based semiconductor devices known as Schottky diodes. “These devices are crucial components in wireless energy harvesters and ultimately dictate the performance and cost of the sensor nodes,” Loganathan says.

Key contributions from the KAUST team include scalable methods for manufacturing RF diodes to harvest energy reaching the 5G/6G frequency range. “Such technologies provide the needed building blocks toward a more sustainable way to power the billions of sensor nodes in the near future,” Anthopoulos says.

The team is investigating the monolithic integration of these low-power devices with antenna and sensors to showcase their true potential, Loganathan adds.

Reference: “Wirelessly powered large-area electronics for the Internet of Things” by Luis Portilla, Kalaivanan Loganathan, Hendrik Faber, Aline Eid, Jimmy G. D. Hester, Manos M. Tentzeris, Marco Fattori, Eugenio Cantatore, Chen Jiang, Arokia Nathan, Gianluca Fiori, Taofeeq Ibn-Mohammed, Thomas D. Anthopoulos and Vincenzo Pecunia, 28 December 2022, Nature Electronics.
DOI: 10.1038/s41928-022-00898-5

3 Comments on "A Cheaper and Greener Internet of Things With No Wires Attached"

  1. Stop. Don’t.

    It’s interesting, but always been a solution in search of a problem. But if there’s trillions of devices, say just the minimum 2 trillion, and 8 billion people, that’s 250 IoT devices each for every man, woman, and child to update the firmwares on. Have you updated your router’s firmware this month? How about your BIOS? Have you ever? Admit it, your VCR would still be flashing 12:00 if you had maintained it. People make terrible administrators with only a few devices, seemingly all a part of some botnet attacking websites or spying on you. That’s why the IoT is referred to as the IoS, or the Internet of Shi

  2. Maybe you should now publish an article about the known dangers of EMF radiation, the elephant in the room being studiously ignored by governments and regulatory agencies the world over.
    A 1999 study (link below) demonstrated a worrying causal effect between cancers in rodents and emf radiation produced by 2G and 3G cellphones. Nobody in authority seems interested in researching the potentially much more hazardous effects of 4 and 5G – let alone 6G which we are told will eventually become the industry standard.
    Have we learned nothing from the carnage caused by rolling out experimental vaccines without adequate safety trials?

  3. I wanted to introduce myself and let you know how much I enjoyed reading your website.
    Glass can be replaced with polycarbonate sheet because it has numerous advantageous characteristics. Flexible flat sheets and two-wall sheets constructed of polycarbonate can be produced (polycarbonate sheet bend radius). Polycarbonate panels can be utilized in locations where glass wouldn’t be practical due to their flexibility.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.