Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Fundamental Principle of Cosmology Cast in Doubt by Compelling New Study
    Space

    Fundamental Principle of Cosmology Cast in Doubt by Compelling New Study

    By University of BonnApril 8, 20204 Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Regional Differences in the Expansion of the Universe
    The blue areas expand more slowly than expected, the yellow areas faster. In isotropy, the image would be monochromatic red. Credit: © Konstantinos Nikolaos Migkas, Uni Bonn/Astronomy & Astrophysics

    Study by the Universities of Bonn and Harvard raises doubts about basic assumption for the universe.

    No matter where we look, the same rules apply everywhere in space: countless calculations of astrophysics are based on this basic principle. A recent study by the Universities of Bonn and Harvard, however, has thrown this principle into question. Should the measured values be confirmed, this would toss many assumptions about the properties of the universe overboard. The results are published in the journal Astronomy & Astrophysics, but are already available online.

    Since the big bang, the universe has swollen like a freshly formed raisin roll put in a warm place to rise. Until recently, it was thought that this increase in size was occurring evenly in all directions, as with a good yeast dough. Astrophysicists call this “isotropy.” Many calculations on the fundamental properties of the universe are based on this assumption. It is possible that they are all wrong — or at least, inaccurate — thanks to compelling observations and analyses of the scientists from the Universities of Bonn and Harvard.

    Sky Distribution of the 313 Clusters Analyzed by the Authors
    The sky distribution of the 313 clusters analyzed by the authors in galactic coordinates. Four galaxy clusters as observed by the Chandra telescope are displayed as examples. Credit: © NASA/Chandra

    For they have put the isotropy hypothesis to the test for the first time with a new method that allows more reliable statements than before. With an unexpected result: According to this method, some areas in space expand faster than they should, while others expand more slowly than expected. “In any case, this conclusion is suggested by our measurements,” states Konstantinos Migkas, from the Argelander Institute for Astronomy at the University of Bonn.

    Migkas and his colleagues have developed a new, efficient isotropy test in their study. It is based on the observation of so-called galaxy clusters — in a sense, the raisins in the yeast bun. The clusters emit X-ray radiation that can be collected on Earth (in this case, this was done by the satellite-based telescopes Chandra and XMM-Newton). The temperature of the galaxy clusters can be calculated based on certain characteristics of the radiation. Also, their brightness can be measured. The hotter they are, the brighter they glow.

    In an isotropic universe, a simple rule applies. The further away a celestial object is from us, the faster it moves away from us. From its speed, we can therefore deduce its distance from us, regardless of the direction in which the object lies. At least that’s what we thought until now. “In reality, however, our brightness measurements seem to disagree with the above distance calculation,” Migkas emphasizes.

    This is because the amount of light that reaches the earth decreases with increasing distance. So, anyone who knows the original luminosity of a celestial body and its distance knows how bright it should shine in the telescope image. And it is precisely at this point that scientists have come across discrepancies that are difficult to reconcile with the isotropy hypothesis: that some galaxy clusters are much fainter than expected. Their distance from Earth is probably much greater than calculated from their speed. And for some others, however, the opposite is the case.

    “There are only three possible explanations for this,” states Migkas, who is doing his doctorate in the research group of Prof. Dr. Thomas Reiprich at the Argelander Institute. “Firstly, it is possible that the X-ray radiation, whose intensity we have measured, is attenuated on its way from the galaxy clusters to Earth. This could be due to as yet undiscovered gas or dust clouds inside or outside the Milky Way. In preliminary tests, however, we find this discrepancy between measurement and theory not only in X-rays but also at other wavelengths. It is extremely unlikely that any kind of matter nebula absorbs completely different types of radiation in the same way. But we won’t know for sure for several months.”

    A second possibility are so-called “bulk flows.” These are groups of neighboring galaxy clusters that move continuously in a certain direction — for example, due to some structures in space that generate strong gravitational forces. These would therefore attract the galaxy clusters to themselves and thus change their speed (and thus also their derived distance). “This effect would also mean that many calculations on the properties of the local universe would be imprecise and would have to be repeated,” explains Migkas.

    The third possibility is the most serious: What if the universe is not isotropic at all? What if — metaphorically speaking — the yeast in the galactic raisin roll is so unevenly distributed that it quickly bulges in some places while it hardly grows at all in other regions? Such an anisotropy could, for example, result from the properties of the mysterious “dark energy,” which acts as an additional driving force for the expansion of the universe. However, a theory is still missing that would make the behavior of the Dark Energy consistent with the observations. “If we succeed in developing such a theory, it could greatly accelerate the search for the exact nature of this form of energy,” Migkas is certain.

    The current study is based on data from more than 800 galaxy clusters, 300 of which were analyzed by the authors. The remaining clusters come from previously published studies. The analysis of the X-ray data alone was so demanding that it took several months. The new satellite-based eROSITA X-ray telescope is expected to record several thousand more galaxy clusters in the coming years. At the latest then it will become clear whether the isotropy hypothesis really has to be abandoned.

    Reference: “Probing cosmic isotropy with a new X-ray galaxy cluster sample through the L X – T scaling relation” by K. Migkas, G. Schellenberger, T. H. Reiprich, F. Pacaud, M. E. Ramos-Ceja and L. Lovisari, 8 April 2020, Astronomy & Astrophysics.
    DOI: 10.1051/0004-6361/201936602

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Astrophysics Cosmology Dark Energy Harvard University University of Bonn
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Dark Energy Survey Finds New Dwarf Galaxy Candidates

    New Findings Will Help Light the Way to Understanding Dark Energy

    Study Reveals Indications That Dark Matter is Being Erased by Dark Energy

    Dark Energy Survey Reveals a Rare Superluminous Supernova

    New Research Suggests Dark Energy Hides Behind Phantom Fields

    Research Sheds New Light on Dark Energy

    Researchers Use New CMB Data to Analyze the First Hundred Thousand Years of Our Universe

    Module for ESA’s Euclid ‘Dark Universe’ Mission in Development

    Scientists Use Quasars To Probe Dark Energy & Measure Its Role in the Evolution of the Universe

    4 Comments

    1. katesisco on April 9, 2020 12:33 pm

      The YEAST referred to is most likely MAGNETISM.

      Reply
      • Patrick on January 8, 2021 12:46 pm

        Very Interesting new Data about our Universe.

        Reply
    2. LIve Wire on April 10, 2020 4:25 pm

      “The foundation of Big Bang theory is based on the belief that an object’s redshift is reliably proportional to its distance and velocity away from the observer. In this reasoning, the higher an object’s redshift, the farther away it is and the faster it is moving away from our perspective on Earth. As we’ve discussed countless times, a number of scientists, including the late astronomer Halton Arp, catalogued so-called anomalous objects which completely defy this reasoning.”

      https://www.thunderbolts.info/wp/2020/02/26/ray-gallucci-do-quasars-and-redshift-break-big-bang-theory-space-news/

      Reply
    3. Bruce Rout on May 24, 2021 7:57 am

      Or, it may be that the universe is homogeneous and isotropic and your basic assumptions upon which you are basing your hypotheses are bollocks.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    The U.S. Is Sitting on a Goldmine of Critical Minerals – but They’re Being Thrown Away

    The Salmon Superfood You’ve Never Heard Of

    New Smart Pimple Patch Clears Acne in Just 7 Days

    Something From Nothing – Physicists Mimic the “Impossible” Schwinger Effect

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Invasive Flathead Catfish Rise to Apex Predator in Pennsylvania
    • The Ocean’s Most Abundant Life Form May Not Survive Global Warming
    • For the First Time in 40 Years, Panama’s Ocean Lifeline Has Vanished
    • The Newly Found Bone Switch That Could Stop Osteoporosis
    • Heart Attacks May Be Infectious and Vaccines Could Prevent Them
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.