Scientists Identify Potential Solvents for Building on the Moon and Mars

Mars Outpost Art Concept Illustration

Researchers at Washington State University are pioneering the discovery of liquid solvents crucial for extracting building materials from lunar and Martian soils. This advancement is vital for the construction of structures and tools necessary for long-term space exploration. By utilizing machine learning and computational modeling, the team has identified potential ionic liquids that can efficiently and environmentally sustainably extract essential elements for 3D printing applications in space. This initiative is part of NASA’s Artemis mission and represents a significant step towards reducing the dependency on Earth for construction materials in space missions. Credit: SciTechDaily

Researchers have initiated the process of identifying liquid solvents that could potentially be used to extract essential construction materials from the dust of lunar and Martian rocks. This development is a crucial component in enabling long-term space exploration.

Using machine learning and computational modeling, Washington State University researchers have found about half a dozen good candidates for solvents that can extract materials on the moon and Mars usable in 3D printing. The work, reported in the Journal of Physical Chemistry B, is led by Soumik Banerjee, associate professor in WSU’s School of Mechanical and Materials Engineering.

Discovery of Potential Solvents

The powerful solvents, called ionic liquids, are salts that are in a liquid state.

“The machine learning work brought us down from the 20,000-foot to the 1,000-foot level,” Banerjee said. “We were able to down-select a lot of ionic liquids very quickly, and then we could also scientifically understand the most important factors that determine whether a solvent is able to dissolve the material or not.”

Environmental and Efficiency Concerns

As part of its Artemis mission, NASA, which funded Banerjee’s work, wants to send humans back to the moon and then to deeper space to Mars and beyond. But to make such long-term missions possible, astronauts will have to use the materials and resources in those extraterrestrial environments, using 3D printing to make structures, tools, or parts from essential elements extracted from lunar or Martian soil.

“In situ resource utilization is a big deal over the next couple of decades for NASA,” said Banerjee. “Otherwise, we would need a terribly high payload of materials to carry from Earth.”

Acquiring those building materials must be done in an environmentally friendly and energy-efficient way. The method to mine the elements also can’t use water, which isn’t available on the moon.  

Ionic liquids, which Banerjee’s group has been studying for more than a decade for use in batteries, could be the answer.

Testing each ionic liquid candidate in a lab is expensive and time-consuming, however, so the researchers used machine learning and modeling at the level of atoms to narrow down from hundreds of thousands of candidates. They looked for those that might digest lunar and Martian materials, extract important elements such as aluminum, magnesium, and iron, regenerate themselves, and perhaps produce oxygen or water as a byproduct to help provide life-support.

Refining the Selection of Solvents

Identifying superior qualities that the solvents will need, the researchers were able to find about half a dozen very strong candidates. Important factors for success included the size of the molecular ions that make up the salts, its surface charge density, which is the charge per unit area of the ions, and the mobility of the ions in the liquids.

Working with researchers at the University of Colorado in a separate study, the researchers tested a few ionic liquids in the lab for their ability to dissolve compounds. They hope to eventually build a lab-scale or pilot-scale reactor and test good candidate solvents with lunar regolith-type materials.

Reference: “Toward Metal Extraction from Regolith: Theoretical Investigation of the Solvation Structure and Dynamics of Metal Ions in Ionic Liquids” by Azmain F. Islam and Soumik Banerjee, 9 November 2023, The Journal of Physical Chemistry B.
DOI: 10.1021/acs.jpcb.3c04057

The study was funded by the NASA Headquarters. 

Be the first to comment on "Scientists Identify Potential Solvents for Building on the Moon and Mars"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.