Unveiling the Molecular Mechanisms Behind PTSD and Depression: Latest Findings

PTSD Brain Differences Art

Researchers from McLean Hospital and collaborating institutions have discovered shared and distinct molecular changes in brain regions, genomic layers, cell types, and blood of individuals with PTSD and MDD, offering new insights for therapeutic and diagnostic advancements. Credit: SciTechDaily

Study reveals molecular distinctions and similarities in PTSD and depression, highlighting potential therapeutic targets and biomarkers.

A comprehensive examination of multiple biological processes is essential for understanding the development of stress-related disorders. Recent research conducted by scientists at McLean Hospital, along with collaborators from The University of Texas at Austin and Lieber Institute for Brain Development, has revealed both shared and unique molecular changes in brain regions, genomic layers, cell types, and blood among individuals with posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). These findings, published in Science, could pave the way for innovative treatments and biomarkers.

The Complexity of PTSD Explored

“PTSD is a complex pathological condition. We had to extract information across multiple brain regions and molecular processes to capture the biological networks at play,” explained lead author Nikolaos P. Daskalakis, MD, PhD.

Stress-related disorders develop over time, stemming from epigenetic modifications caused by the interplay between genetic susceptibility and traumatic stress exposure. Although previous research has identified factors such as hormonal, immune, methylomic, and transcriptomic influences, the limited availability of postmortem brain tissues from PTSD patients has hindered a comprehensive understanding of these brain-based molecular changes.

Multi-omics Approach to Studying PTSD and Depression

“Our primary goals for this study were to interpret and integrate differential gene and protein expression, epigenetic alterations and pathway activity across our postmortem brain cohorts in PTSD, depression and neurotypical controls,” said senior author Kerry Ressler, MD, PhD, chief scientific officer and director of Division of Depression and Anxiety Disorders and Neurobiology of Fear Laboratory at McLean Hospital, and a professor of psychiatry at Harvard Medical School. “We essentially combined circuit biology with powerful multi-omics tools to delve into the molecular pathology behind these disorders.”

For this, the team analyzed multi-omic data from 231 PTSD, MDD, and neurotypical control subjects, along with 114 individuals from replication cohorts for differences in three brain regions — the medial prefrontal cortex (mPFC), hippocampal dentate gyrus (DG) and central nucleus of the amygdala (CeA). They also performed single-nucleus RNA sequencing (snRNA-seq) of 118 PFC samples to study cell-type-specific patterns and evaluated blood-based proteins in more than 50,000 UK Biobank participants to isolate key biomarkers associated with stress-related disorders. Finally, the overlap of these key brain-based disease process genes was compared with genome-wide association studies (GWAS)-based risk genes to identify PTSD and MDD risk.

Molecular Variations and Disease Mechanisms

Individuals with PTSD and MDD shared altered gene expression and exons in the mPFC but differed in the localization of epigenetic changes. Further analysis revealed that a history of childhood trauma and suicide were strong drivers of molecular variations in both disorders. The authors noted that MDD disease signals were more strongly associated with male-specific results, suggesting that sex differences may underlie disease risk.

Top disease-associated genes and pathways across regions, omics, and/or traits implicated biological processes in both neuronal and non-neuronal cells. These included molecular regulators and transcription factors, and pathways involved in immune function, metabolism, mitochondria function, and stress hormone signaling.

Implications for Diagnostic and Therapeutic Advances

“Understanding why some people develop PTSD and depression and others don’t is a major challenge,” said investigator Charles B. Nemeroff, M.D., PhD, chair of the Department of Psychiatry and Behavioral Sciences at Dell Medical School of UT Austin. “We found that the brains of people with these disorders have molecular differences, especially in the prefrontal cortex. These changes seem to affect things like our immune system, how our nerves work, and even how our stress hormones behave.”

The genetic components of the work built on a study published last month by researchers including Ressler and Daskalakis in Nature Genetics, in which they identified 95 locations, or loci in the genome (including 80 new) associated with PTSD. Their multi-omic analyses found 43 potential causal genes for the disorder.

The researchers now could reveal only limited overlap between the top genes and those implicated in GWAS studies, underscoring the gap in current understanding between disease risk and underlying disease processes. In contrast, they discovered greater correlations between brain multi-omics and blood markers.

“Our findings support the development of brain-informed blood biomarkers for real-time profiling,” said Daskalakis.

Ressler added, “These biomarkers could help overcome current challenges in obtaining brain biopsies for advancing new treatments.”

Future Directions

Limitations of the study include the inherent biases in postmortem brain research, including population selection, clinical assessment, comorbidities, and end-of-life state. The authors also caution that they did not fully characterize all cell subtypes and cell states and that future studies are required to understand contrasting molecular signals across omics or brain regions.

The team plans on using this database as groundwork for future analysis of how genetic factors interact with environmental variables to create downstream disease effects.

“Learning more about the molecular basis of these conditions, PTSD and MDD, in the brain paves the way for discoveries that will lead to more effective therapeutic and diagnostic tools. This work was possible because of the brain donations to the Lieber Institute Brain Repository from families whose loved ones died of these conditions,” said Joel Kleinman, MD, PhD, associate director of Clinical Sciences at the Lieber Institute for Brain Development. “We hope our research will one day bring relief to individuals who struggle with these disorders and their loved ones.”

For more on this research, see New Molecular Insights Into PTSD and Depression.

Reference: “Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood” by Nikolaos P. Daskalakis, Artemis Iatrou, Chris Chatzinakos, Aarti Jajoo, Clara Snijders, Dennis Wylie, Christopher P. DiPietro, Ioulia Tsatsani, Chia-Yen Chen, Cameron D. Pernia, Marina Soliva-Estruch, Dhivya Arasappan, Rahul A. Bharadwaj, Leonardo Collado-Torres, Stefan Wuchty, Victor E. Alvarez, Eric B. Dammer, Amy Deep-Soboslay, Duc M. Duong, Nick Eagles, Bertrand R. Huber, Louise Huuki, Vincent L. Holstein, Mark W. Logue, Justina F. Lugenbühl, Adam X. Maihofer, Mark W. Miller, Caroline M. Nievergelt, Geo Pertea, Deanna Ross, Mohammad S. E. Sendi, Benjamin B. Sun, Ran Tao, James Tooke, Erika J. Wolf, Zane Zeier, PTSD Working Group of Psychiatric Genomics Consortium**, Sabina Berretta, Frances A. Champagne, Thomas Hyde, Nicholas T. Seyfried, Joo Heon Shin, Daniel R. Weinberger, Charles B. Nemeroff, Joel E. Kleinman and Kerry J. Ressler, 24 May 2024, Science.
DOI: 10.1126/science.adh3707

Disclosures: Nikolaos P. Daskalakis is on the scientific advisory boards for BioVie Inc., Circular Genomics, Inc., and Feel Therapeutics, Inc.; Daniel R. Weinberger is on the advisory boards of Pasithea Therapeutics and Sage Therapeutics for unrelated work; Duc M. Duong is a cofounder of ARC Proteomics, and cofounder and paid consultant of Emtherapro Inc.; Chia-Yen Chen is an employee of Biogen Inc.; Mohammad S. E Sendi receives consulting fees for unrelated work from Niji Corp, Benjamin B. Sun is an employee and stockholder of Biogen Inc.; Kerry J. Ressler has received consulting income from Alkermes and sponsored research support from Brainsway and Takeda, and is on the scientific advisory boards for Janssen, Verily, and Resilience Therapeutics for unrelated work.

Funding: This work was supported by grants from NIMH, the Brain & Behavior Research Foundation, Stichting Universitas / the Bontius Foundation, the Dutch Research Council (NWO) fund, and McLean Hospital.

Be the first to comment on "Unveiling the Molecular Mechanisms Behind PTSD and Depression: Latest Findings"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.