Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Novel Metal Discovered Where Electrons Flow in the Same Way Water Flows in a Pipe
    Physics

    Novel Metal Discovered Where Electrons Flow in the Same Way Water Flows in a Pipe

    By Boston CollegeSeptember 6, 20212 Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Liquid-Like Electron Flow in a Novel Metal
    A small crystal of the new material, a synthesis of Niobium and Germanium (NbGe2), is mounted on a device to examine the behavior of the new electron-phonon liquid. The inset shows the atomic arrangement in the material. Credit: Fazel Tafti, Boston College

    The findings confirm theoretical predictions that certain metallic specimens could support an electron-phonon liquid phase.

    A team of researchers from Boston College has created a new metallic specimen where the motion of electrons flows in the same way water flows in a pipe — fundamentally changing from particle-like to fluid-like dynamics, the team reports in Nature Communications.

    Working with colleagues from the University of Texas at Dallas and Florida State University, Boston College Assistant Professor of Physics Fazel Tafti found in the metal superconductor, a synthesis of Niobium and Germanium (NbGe2), that a strong interaction between electrons and phonons alters the transport of electrons from the diffusive, or particle-like, to hydrodynamic, or fluid-like, regime.

    The findings mark the first discovery of an electron-phonon liquid inside NbGe2, Tafti said.

    “We wanted to test a recent prediction of the ‘electron-phonon fluid’,” Tafti said, noting that phonons are the vibrations of a crystal structure. “Typically, electrons are scattered by phonons which leads to the usual diffusive motion of electrons in metals. A new theory shows that when electrons strongly interact with phonons, they will form a united electron-phonon liquid. This novel liquid will flow inside the metal exactly in the same way as water flows in a pipe.”

    By confirming the predictions of theoreticians, the experimental physicist Tafti — working with his Boston College colleague Professor of Physics Kenneth Burch, Luis Balicas of FSU, and Julia Chan of UT-Dallas — says the discovery will spur further exploration of the material and its potential applications.

    Water vs. Wires: A Tale of Two Flows

    Tafti noted that our daily lives depend on the flow of water in pipes and electrons in wires. As similar as they may sound, the two phenomena are fundamentally different. Water molecules flow as a fluid continuum, not as individual molecules, obeying the laws of hydrodynamics. Electrons, however, flow as individual particles and diffuse inside metals as they get scattered by lattice vibrations.

    The team’s investigation, with significant contributions from graduate student researcher Hung-Yu Yang, who earned his doctorate from BC in 2021, focused on the conduction of electricity in the new metal, NbGe2, Tafti said.

    They applied three experimental methods: electrical resistivity measurements showed a higher-than-expected mass for electrons; Raman scattering showed a change of behavior in the vibration of the NbGe2 crystal due to the special flow of electrons; and X-ray diffraction revealed the crystal structure of the material.

    By using a specific technique known as the “quantum oscillations” to evaluate the mass of electrons in the material, the researchers found that the mass of electrons in all trajectories was three times larger than the expected value, said Tafti, whose work is supported by the National Science Foundation.

    “Heavy Electrons” and the Drag Effect

    “This was truly surprising because we did not expect such ‘heavy electrons’ in a seemingly simple metal,” Tafti said. “Eventually, we understood that the strong electron-phonon interaction was responsible for the heavy electron behavior. Because electrons interact with lattice vibrations, or phonons, strongly, they are ‘dragged’ by the lattice and it appears as if they have gained mass and become heavy.”

    Tafti said the next step is to find other materials in this hydrodynamic regime by leveraging the electron-phonon interactions. His team will also focus on controlling the hydrodynamic fluid of electrons in such materials and engineering new electronic devices.

    Reference: “Evidence of a coupled electron-phonon liquid in NbGe2” by Hung-Yu Yang, Xiaohan Yao, Vincent Plisson, Shirin Mozaffari, Jan P. Scheifers, Aikaterini Flessa Savvidou, Eun Sang Choi, Gregory T. McCandless, Mathieu F. Padlewski, Carsten Putzke, Philip J. W. Moll, Julia Y. Chan, Luis Balicas, Kenneth S. Burch and Fazel Tafti, 6 September 2021, Nature Communications.
    DOI: 10.1038/s41467-021-25547-x

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Boston College Crystals Electrons Metal Popular
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Groundbreaking Technique Yields Extraordinary Results – Limits on Long-Theorized “Fifth Force” of Nature

    Ghost Polaritons: New Type of Infrared Polaritons Discovered at the Surface of Bulk Crystals

    Scientists Discover New Crystal That Exhibits Exotic Form of Magnetism

    A Crystal Made Exclusively of Electrons – “Holy Grail” Wigner Crystals Observed for First Time

    Quantum Melting of Wigner Crystals: Creating a System for Studying Quantum Phase Transitions

    See World’s First Video of a Space-Time Crystal

    Simulating Quantum Walks in Two Dimensions

    Graphene Submerged in Electrically Neutral Liquid Sets Mobility Record

    First Real-Time Image of Two Atoms Vibrating in a Molecule

    2 Comments

    1. BibhutibhusanPatel on September 7, 2021 11:00 am

      Such kind of possibility is permissible.Electron-phonon fluid can show analogy to hydodynamics.

      Reply
    2. BibhutibhusanPatel on September 7, 2021 11:32 am

      Such kind of possibility is permissible.Electron-phonon fluid can show analogy to hydodynamics.This depends on the metaĺs set and phenomena occure as from analysis of practical experimentation to get proper insight.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    For the First Time in 40 Years, Panama’s Ocean Lifeline Has Vanished

    The Newly Found Bone Switch That Could Stop Osteoporosis

    Heart Attacks May Be Infectious and Vaccines Could Prevent Them

    World’s Oldest Microbial DNA Discovered in Ancient Mammoth Remains

    Popular Weight-Loss Drugs Like Ozempic Pose Hidden Risks for Young Women, Warn Researchers

    90% Chance: Physicists Predict a Black Hole Could Explode This Decade

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Endangered Sharks Found in U.S. Grocery Store Seafood, Study Warns
    • Archaeologists Shatter “Man the Hunter” Myth at Stone Age Burial Site
    • Scientists Find a Way to “Bulletproof” T Cells Against Cancer
    • Study Shows Brain Signals Only Matter if They Arrive on Time
    • Scientists Discover Massive DNA “Inocles” Living in the Human Mouth
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.