Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Princeton Physicists Unravel a Puzzle To Speed Fusion Energy Development
    Physics

    Princeton Physicists Unravel a Puzzle To Speed Fusion Energy Development

    By John Greenwald, Princeton Plasma Physics LaboratoryApril 25, 20221 Comment4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Plasma Energy Generation Concept Slow
    Researchers at the DOE’s Princeton Plasma Physics Laboratory have developed an efficient algorithm to model the chaotic movement of free electrons in fusion experiments. This approach solves a challenging equation, improving control over the unpredictable electrons in fusion fuel.

    Princeton scientists developed an algorithm that models electron movement in fusion, advancing plasma control and fusion energy research.

    Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory have created an efficient computer algorithm to model the crazy-quilt movement of free electrons during experimental efforts to harness the fusion power that drives the sun and stars. The approach solves a difficult equation, allowing for better control of the unpredictable and fast-moving electrons in the fuel for fusion energy.

    Fusion generates massive energy by combining light elements in the form of plasma — the hot, charged gas made of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe. Scientists all across the globe are working to reproduce the fusion process in order to create a safe, clean, and plentiful power source for generating electricity.

    Solving the Equation

    A key hurdle for researchers developing fusion on doughnut-shaped devices called tokamaks, which confine the plasma in magnetic fields, has been solving the equation that describes the motion of free-wheeling electrons as they collide and bounce around. Standard methods for simulating this motion, technically called pitch-angle scattering, have proven unsuccessful due to the complexity of the equation.

    A successful set of computational rules, or algorithm, would solve the equation while conserving the energy of the speeding particles. “Solving the stochastic differential equation gives the probability of every path the scattered electrons can take,” said Yichen Fu, a graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of a paper in the Journal of Computational Physics that proposes a solution. Such equations yield a pattern that can be analyzed statistically but not determined precisely.

    PPPL Yichen Fu
    Yichen Fu, center, lead author of the path-setting paper with co-authors Laura Xing Zhang and Hong Qin. Credit: Photos of Fu and Qin by Elle Starkman/Office of Communications; collage by Kiran Sudarsanan.

    The accurate solution describes the trajectories of the electrons being scattered. “However, the trajectories are probabilistic and we don’t know exactly where the electrons would go because there are many possible paths,” Fu said. “But by solving the trajectories we can know the probability of electrons choosing every path, and knowing that enables more accurate simulations that can lead to better control of the plasma.”

    A major benefit of this knowledge is improved guidance for fusion researchers who pump electric current into tokamak plasmas to create the magnetic field that confines the superhot gas. Another benefit is better understanding of the pitch-angle scattering on energetic runaway electrons that pose danger to the fusion devices.

    Rigorous Proof

    The finding provides a rigorous mathematical proof of the first working algorithm for solving the complex equation. “This gives experimentalists a better theoretical description of what’s going on to help them design their experiments,” said Hong Qin, a principal research physicist, advisor to Fu and a coauthor of the paper. “Previously, there was no working algorithm for this equation, and physicists got around this difficulty by changing the equation.”

    The reported study represents the research activity in algorithms and applied math of the recently launched Computational Sciences Department (CSD) at PPPL and expands an earlier paper coauthored by Fu, Qin and graduate student Laura Xin Zhang, a coauthor of this paper. While that work created a novel energy-conserving algorithm for tracking fast particles, the method did not incorporate magnetic fields and the mathematical accuracy was not rigorously proven.

    The CSD, founded this year as part of the Lab’s expansion into a multi-purpose research center, supports the critical fusion energy sciences mission of PPPL and serves as the home for computationally intensive discoveries. “This technical advance displays the role of the CSD,” Qin said. “One of its goals is to develop algorithms that lead to improved fusion simulations.”

    Reference: “An explicitly solvable energy-conserving algorithm for pitch-angle scattering in magnetized plasmas” by Yichen Fu, Xin Zhang and Hong Qin, 8 October 2021, Journal of Computational Physics.
    DOI: 10.1016/j.jcp.2021.110767

    Support for this work comes from the DOE Office of Science.

    PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Department of Energy Fusion Energy Plasma Plasma Physics Princeton Plasma Physics Laboratory
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Sloshing Cosmos: First Direct Observation of Long-Theorized Plasma Instabilities

    A Simpler Path to Fusion: The Promise of Spherical Tokamak Technology

    Photon Polarization: The Next Breakthrough in Fusion Technology?

    Fusion’s Island Paradise: Mastering Plasma With Magnets and Microwaves

    Validating Models for Next-Generation Fusion Power Plants

    Previously Unexplained Light and Heat Emissions May Be Caused by Whirling Masses of Plasma Near Black Holes

    Plasma-Powered Rocket Designed for Deep Space Exploration

    Fusion Breakthrough Once Thought Impossible Brings Energy Device Closer to Realization

    While Birds Chirp, Plasma Shouldn’t: New Plasma Physics Insight Advances the Development of Fusion Energy

    1 Comment

    1. Dumitriu Sorin on April 25, 2022 10:55 pm

      Un model corect al nucleului atomic, v-ar scuti de afortul Sisific, in a declanșa fuziunea nucleara. Da, are loc în nucleele stelelor și planetelor. Dar cunoașteți natura acestor nuclee? Natura orbitalilor atomici? Natura electronilor? Reper: in relativitatea generală, soluția matematica este puntea Einstein -Rosen. Spor! :))

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    It’s Snowing Salt. The Strange Phenomenon Happening Deep in the Dead Sea

    Stanford Scientists Successfully Reverse Autism Symptoms in Mice

    Scientists Finally Solve the Mystery of the Sun’s Fastest Particles

    Don’t Throw Away Those Cannabis Leaves – They’re Packed With Rare Compounds

    Why Cancer Spreads: Scientists Uncover a New Clue Inside the Cell’s Power Plant

    These Glow-in-the-Dark Succulents Could Replace Your Night Light

    Mezcal Worm in a Bottle Yields Surprising DNA Results

    The Math Says Life Shouldn’t Exist: New Study Challenges Origins Theories

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • JWST May Have Found the Universe’s First Pristine Galaxy
    • What Are These Creepy Creatures? Scientists Close In on Century-Old Crustacean Mystery
    • Warning: Common Food Ingredients, Including Caffeine, Weaken Antibiotics
    • Scientists Find Kidney-Saving microRNA in a World-First Discovery
    • Why Do We Need Sleep? Oxford Scientists Trace the Answer to Mitochondria
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.