Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Mysterious Hidden Quantum Phase in a 2D Crystal Captured by Scientists for the First Time
    Physics

    Mysterious Hidden Quantum Phase in a 2D Crystal Captured by Scientists for the First Time

    By Sandi Miller, MIT Department of PhysicsJuly 31, 2022No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Hidden Quantum Phase in 2D Crystal
    This illustration represents the light-induced collapse of the nanoscale charge order in a 2D crystal of tantalum disulfide (star-shapes) and the generation of a hidden metastable metallic state (spheres). Credit: Frank Yi Gao

    Single-shot spectroscopy techniques provide scientists with a new understanding of a mysterious light-driven process.

    Harold “Doc” Edgerton, the late MIT professor, developed high-speed strobe-flash photography in the 1960s that allowed us to visualize events too fast for the eye — a droplet hitting a pool of milk or a bullet piercing an apple.

    Now, scientists at MIT and the University of Texas at Austin have for the first time captured snapshots of a light-induced metastable phase hidden from the equilibrium universe by using a suite of advanced spectroscopic tools. They were able to view this transition in real-time by using single-shot spectroscopy techniques on a 2D crystal with nanoscale modulations of electron density.

    “With this work, we are showing the birth and evolution of a hidden quantum phase induced by an ultrashort laser pulse in an electronically modulated crystal,” says Frank Gao PhD ’22, co-lead author on a paper about the work who is currently a postdoc at UT Austin.

    “Usually, shining lasers on materials is the same as heating them, but not in this case,” adds Zhuquan Zhang­­, co-lead author and current MIT graduate student in chemistry. “Here, irradiation of the crystal rearranges the electronic order, creating an entirely new phase different from the high-temperature one.”

    A paper on this research was published on July 22 in the journal Science Advances. The project was jointly coordinated by Keith A. Nelson, the Haslam and Dewey Professor of Chemistry at MIT, and by Edoardo Baldini, an assistant professor of physics at UT-Austin.

    Laser Shows

    “Understanding the origin of such metastable quantum phases is important to address long-standing fundamental questions in nonequilibrium thermodynamics,” says Nelson.

    “The key to this result was the development of a state-of-the-art laser method that can ‘make movies’ of irreversible processes in quantum materials with a time resolution of 100 femtoseconds.” adds Baldini.

    The material, tantalum disulfide, consists of covalently bound layers of tantalum and sulfur atoms stacked loosely on top of one another. Below a critical temperature, the atoms and electrons of the material pattern into nanoscale “Star of David” structures — an unconventional distribution of electrons known as a “charge density wave.”

    The formation of this new phase makes the material an insulator, but shining one single, intense light pulse pushes the material into a metastable hidden metal. “It is a transient quantum state frozen in time,” says Baldini. “People have observed this light-induced hidden phase before, but the ultrafast quantum processes behind its genesis were still unknown.”

    Adds Nelson, “One of the key challenges is that observing an ultrafast transformation from one electronic order to one that may persist indefinitely is not practical with conventional time-resolved techniques.”

    Pulses of Insight

    The researchers developed a unique method that involved splitting a single probe laser pulse into several hundred distinct probe pulses that all arrived at the sample at different times before and after switching was initiated by a separate, ultrafast excitation pulse. By measuring changes in each of these probe pulses after they were reflected from or transmitted through the sample and then stringing the measurement results together like individual frames, they could construct a movie that provides microscopic insights into the mechanisms through which transformations occur.

    By capturing the dynamics of this complex phase transformation in a single-shot measurement, the authors demonstrated that the melting and the reordering of the charge density wave leads to the formation of the hidden state. Theoretical calculations by Zhiyuan Sun, a Harvard Quantum Institute postdoc, confirmed this interpretation.

    While this study was carried out with one specific material, the researchers say the same methodology can now be used to study other exotic phenomena in quantum materials. This discovery may also help with the development of optoelectronic devices with on-demand photoresponses.

    Reference: “Snapshots of a light-induced metastable hidden phase driven by the collapse of charge order” by Frank Y. Gao, Zhuquan Zhang, Zhiyuan Sun, Linda Ye, Yu-Hsiang Cheng, Zi-Jie Liu, Joseph G. Checkelsky, Edoardo Baldini and Keith A. Nelson, 22 July 2022, Science Advances.
    DOI: 10.1126/sciadv.abp9076

    Other authors on the paper are chemistry graduate student Jack Liu, Department of Physics MRL Mitsui Career Development Associate Professor Joseph G. Checkelsky; Linda Ye PhD ’20, now a postdoc at Stanford University; and Yu-Hsiang Cheng PhD ’19, now an assistant professor at National Taiwan University.

    Support for this work was provided by the U.S. Department of Energy, Office of Basic Energy Sciences; the Gordon and Betty Moore Foundation EPiQS Initiative; and the Robert A. Welch Foundation.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Crystals MIT Quantum Physics
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Creating Dynamic Symmetry in Diamond Crystals To Improve Qubits for Quantum Computing

    Researchers Propose Using Distant Quasars to Test Bell’s Theorem

    Graphene Effectively Filters Electrons According to the Direction of Their Spin

    Study Shows Creation of Entanglement Simultaneously Gives Rise to a Wormhole

    Harvard and MIT Scientists Create Never-Before-Seen Form of Matter

    Scientists Reveal Quantum Behavior in Fluid Dynamics

    Researchers Make Progress on a Quantum-Computing Proposal

    Spin-Velocity Correlation in an Ultracold, Dilute Gas of Atoms

    New System Converts Laser Beam Into Controlled Stream of Single Photons

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    The U.S. Is Sitting on a Goldmine of Critical Minerals – but They’re Being Thrown Away

    The Salmon Superfood You’ve Never Heard Of

    New Smart Pimple Patch Clears Acne in Just 7 Days

    Something From Nothing – Physicists Mimic the “Impossible” Schwinger Effect

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • “Rogue” DNA Rings Expose Brain Cancer’s Earliest Secrets
    • 40-Year Medical Mystery Solved: Why Smoking Helps Ulcerative Colitis
    • New Breath Test Detects Diabetes in Minutes
    • A 30-Year Study Reveals a Hidden Climate Driver Heating Antarctica’s Core
    • Life on Earth May Be Thanks to a Lucky Planetary Collision
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.