Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»Physicists Chart the ‘Secret’ Movement of Quantum Particles
    Physics

    Physicists Chart the ‘Secret’ Movement of Quantum Particles

    By University of CambridgeDecember 22, 2017No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Researchers Chart Movement of Quantum Particles
    Artist’s conception of quantum particle movement. Credit: Robert Couse-Baker

    Researchers from the University of Cambridge have taken a peek into the secretive domain of quantum mechanics. In a theoretical paper published in the journal Physical Review A, they have shown that the way that particles interact with their environment can be used to track quantum particles when they’re not being observed, which had been thought to be impossible.

    One of the fundamental ideas of quantum theory is that quantum objects can exist both as a wave and as a particle, and that they don’t exist as one or the other until they are measured. This is the premise that Erwin Schrödinger was illustrating with his famous thought experiment involving a dead-or-maybe-not-dead cat in a box.

    “This premise, commonly referred to as the wave function, has been used more as a mathematical tool than a representation of actual quantum particles,” said David Arvidsson-Shukur, a Ph.D. student at Cambridge’s Cavendish Laboratory, and the paper’s first author. “That’s why we took on the challenge of creating a way to track the secret movements of quantum particles.”

    Any particle will always interact with its environment, ‘tagging’ it along the way. Arvidsson-Shukur, working with his co-authors Professor Crispin Barnes from the Cavendish Laboratory and Axel Gottfries, a Ph.D. student from the Faculty of Economics, outlined a way for scientists to map these ‘tagging’ interactions without looking at them. The technique would be useful to scientists who make measurements at the end of an experiment but want to follow the movements of particles during the full experiment.

    Some quantum scientists have suggested that information can be transmitted between two people – usually referred to as Alice and Bob – without any particles traveling between them. In a sense, Alice gets the message telepathically. This has been termed counterfactual communication because it goes against the accepted ‘fact’ that for information to be carried between sources, particles must move between them.

    “To measure this phenomenon of counterfactual communication, we need a way to pin down where the particles between Alice and Bob are when we’re not looking,” said Arvidsson-Shukur. “Our ‘tagging’ method can do just that. Additionally, we can verify old predictions of quantum mechanics, for example that particles can exist in different locations at the same time.”

    The founders of modern physics devised formulas to calculate the probabilities of different results from quantum experiments. However, they did not provide any explanations of what a quantum particle is doing when it’s not being observed. Earlier experiments have suggested that the particles might do non-classical things when not observed, like existing in two places at the same time. In their paper, the Cambridge researchers considered the fact that any particle traveling through space will interact with its surroundings. These interactions are what they call the ‘tagging’ of the particle. The interactions encode information in the particles that can then be decoded at the end of an experiment, when the particles are measured.

    The researchers found that this information encoded in the particles is directly related to the wave function that Schrödinger postulated a century ago. Previously the wave function was thought of as an abstract computational tool to predict the outcomes of quantum experiments. “Our result suggests that the wave function is closely related to the actual state of particles,” said Arvidsson-Shukur. “So, we have been able to explore the ‘forbidden domain’ of quantum mechanics: pinning down the path of quantum particles when no one is observing them.”

    Reference: “Evaluation of counterfactuality in counterfactual communication protocols” by D. R. M. Arvidsson-Shukur, A. N. O. Gottfries and C. H. W. Barnes, 18 December 2017, Physical Review A.
    DOI: 10.1103/PhysRevA.96.062316

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Particle Physics Popular Quantum Physics University of Cambridge
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Ultra-Precise Measurements Powered by Quantum Negativity – “Highly Counterintuitive and Truly Amazing!”

    New CERN Study Suggests Subatomic Particles Could Defy the Standard Model

    Breakthrough in Quantum Cryptography Demonstrates “Perfectly Secure” Bit Commitment

    Experiment Using Photons Could Detect Quantum-Scale Black Holes

    Photons Traverse Optical Obstacles as Both a Wave and Particle Simultaneously

    Physicists Use Cheap Colliders to Probe for Heavy Photons

    Quantum Interference Shown Experimentally in Larger Molecules

    Evidence of Elusive Majorana Fermions Raises Possibilities for Quantum Computing

    Higgs Boson Signals Gain Strength at Large Hadron Collider

    Leave A Reply Cancel Reply


    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Bizarre 26-Million-Year-Old Fossil of “Shark-Whale” Discovered in Australia

    For Decades, Scientists Believed These Common Food Thickeners Were Indigestible. They Were Wrong

    Scientists Say Exercise May Actually Reverse Your Biological Age

    Megaquake Triggers Rare Tsunami Caught by NASA’s SWOT Satellite

    Ancient Proteins Crack a 2-Million-Year-Old Human Relative Mystery

    NASA Unveils Possible Building Blocks of Life on Saturn’s Moon Titan

    This Earth-Sized Exoplanet Is Racing Toward Its Own Destruction

    This Strange Electron Behavior Just Revealed a New Phase of Matter

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Challenging a Century-Old Belief: Scientists Rewrite the Rules of Light-Driven Chemistry
    • Nearly 12% of Americans Have Used Ozempic or Similar Medications
    • Scientists Discover Minty Molecule That Makes Artificial Sweeteners Taste Better
    • Mount Everest Air Offers Clues to Parkinson’s Treatment
    • Psoriasis Breakthrough: Scientists Restore Immune Balance Without Harsh Side Effects
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.