Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Health»First Volume of the Cancer Cell Line Encyclopedia
    Health

    First Volume of the Cancer Cell Line Encyclopedia

    By Elizabeth Cooney, Harvard GazetteMarch 29, 2012No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Cancer Cell Line Encyclopedia (CCLE)
    Cancer Cell Line Encyclopedia (CCLE)

    Authored by leading scientists at top institutions, the Cancer Cell Line Encyclopedia (CCLE) is a resource that joins deeply detailed cancer genome data with predictors of drug response, information that could lead to refinements in cancer clinical trials and future treatments.

    The goal of cancer treatment is to match the right drug to the right target in the right patient. But before such “personalized” drugs can be developed, more knowledge is needed about specific genomic alterations in cancers and their sensitivity to potential therapeutic agents.

    Now an academic-industry collaboration is releasing the first results from a new and freely available resource that marries deeply detailed cancer genome data with predictors of drug response, information that could lead to refinements in cancer clinical trials and future treatments. The Cancer Cell Line Encyclopedia (CCLE), authored by scientists at the Broad Institute of Harvard and MIT, Harvard-affiliated Dana-Farber Cancer Institute, the Genomics Institute of the Novartis Foundation, and the Novartis Institutes for Biomedical Research, is described in the March 29 issue of the journal Nature. In a proof of principle, the researchers also report that genomic predictors of drug sensitivity revealed three novel candidate biomarkers of response.

    “We hope that the Cancer Cell Line Encyclopedia will be a preclinical resource that could guide clinical trials,” said Levi A. Garraway, a senior associate member of the Broad Institute, an associate professor at Harvard Medical School and Dana-Farber Cancer Institute, and a co-corresponding author of the paper.

    Cancer Cell Line Encyclopedia
    CCLE website: “We hope that the Cancer Cell Line Encyclopedia will be a preclinical resource that could guide clinical trials,” said Levi A. Garraway, a senior associate member of the Broad Institute, an associate professor at Harvard Medical School and Dana-Farber Cancer Institute, and a co-corresponding author of the paper. Credit: CCLE website, Harvard Gazette

    “The CCLE is a public resource that we think will catalyze discoveries throughout the cancer research community,” said Todd Golub, director of the Broad’s Cancer Program, Charles A. Dana Investigator in Human Cancer Genetics at the Dana-Farber Cancer Institute, and a co-author of the paper. “With this initial effort, we have taken some critical first steps. The challenge now is to greatly expand the number of compounds tested across the panel of cell lines.”

    The CCLE integrates gene expression, chromosomal copy number, and massively parallel sequencing data from almost 1,000 human cancer cell lines together with pharmacological profiles for 24 anticancer drugs across roughly half of these cell lines. The scale of the project allows greater depth of genetic characterization and pharmacological annotation than previously possible with fewer cell lines. A separate effort by scientists at Harvard-affiliated Massachusetts General Hospital and the Sanger Institute appears in the same issue of Nature.

    To accomplish such a feat, the team of scientists relied on the genetics, computational biology, and drug-screening capabilities at the Broad, Dana-Farber, and Novartis. They chose 947 of the nearly 1,200 commercially available cancer cell lines to reflect the genomic diversity of human cancers.

    “One of the strengths of the CCLE lies in the number of cell lines it surveys,” said Nicolas Stransky, a computational biologist in the Cancer Program at the Broad and a co-first author of the paper. “We can focus on rare cancer subtypes and still have sufficient statistical power for analyses.”

    Cancer cell lines are malignant cells that have been removed from tumor tissue and cultured in the laboratory. Under controlled conditions, they can grow indefinitely.  This near-immortality is an advantage for performing repeated experiments, but it can be a potential pitfall if the cells differ markedly from tumors because they lack typical surroundings. However, with relatively few exceptions, the CCLE cell lines proved to be representative genetic proxies for primary tumor subsets across multiple different cancer types.

    Correlating the more than 50,000 genetic and molecular features that emerged from these cell lines created a computational challenge that the scientists met by adapting algorithms to the biological data. They tested this tool against genetic alterations known to predict sensitivity to cancer drugs, and confirmed the value of their systematic approach. Then they applied the predictive modeling methodology to genetic subtypes of cancer known to pose challenges for current treatment modalities.

    Armed with this kind of knowledge from the CCLE, researchers may have a much clearer idea of which tumors are most likely to respond to particular drugs before using them in clinical trials, the scientists say. Patients could therefore be selected for such studies based on how likely they are to respond, given the genetic and molecular makeup of their cancers.

    “We can ask questions not only about emerging targeted therapies, but also about standard chemotherapy drugs,” Garraway said.  “There may be ways to identify patients who are more likely to respond to conventional chemotherapy versus those who might not. The predicted ‘non-responders’ may be better off trying a different regimen.”

    There are more volumes to be written in this encyclopedia.

    “From a computational biology perspective, it’s a clean, complex data set that allows many more analyses,” Stransky said. “We are only scratching the surface of what can be done.”

    Reference: “The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity” by Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam A. Margolin, Sungjoon Kim, Christopher J. Wilson, Joseph Lehár, Gregory V. Kryukov, Dmitriy Sonkin, Anupama Reddy, Manway Liu, Lauren Murray, Michael F. Berger, John E. Monahan, Paula Morais, Jodi Meltzer, Adam Korejwa, Judit Jané-Valbuena, Felipa A. Mapa, Joseph Thibault, Eva Bric-Furlong, Pichai Raman, Aaron Shipway, Ingo H. Engels, Jill Cheng, Guoying K. Yu, Jianjun Yu, Peter Aspesi, Melanie de Silva, Kalpana Jagtap, Michael D. Jones, Li Wang, Charles Hatton, Emanuele Palescandolo, Supriya Gupta, Scott Mahan, Carrie Sougnez, Robert C. Onofrio, Ted Liefeld, Laura MacConaill, Wendy Winckler, Michael Reich, Nanxin Li, Jill P. Mesirov, Stacey B. Gabriel, Gad Getz, Kristin Ardlie, Vivien Chan, Vic E. Myer, Barbara L. Weber, Jeff Porter, Markus Warmuth, Peter Finan, Jennifer L. Harris, Matthew Meyerson, Todd R. Golub, Michael P. Morrissey, William R. Sellers, Robert Schlegel and Levi A. Garraway, 28 March 2012, Nature.
    DOI: 10.1038/nature11003

    The Cancer Cell Line Encyclopedia project was enabled by a grant from the Novartis Institutes for Biomedical Research. Additional funding support was provided by the National Cancer Institute, the Starr Cancer Consortium, and the NIH Director’s New Innovator Award.

    Never miss a breakthrough: Join the SciTechDaily newsletter.
    Follow us on Google, Discover, and News.

    Cancer Disease Harvard University
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    New Test Helps Identify People at Risk for Five Deadly Diseases

    New Model Captures Shape and Speed of Tumor Growth for the First Time

    Researchers Uncover an Easily Detectable Precancerous State in Blood

    Study Finds a New Target in Childhood Brain Cancer

    Cancer Cells May Grow More Easily than Thought

    Flavonoid Compound Shown to Prevent Blood Clots

    Nanomedicine BIND-014 to Enter Human Clinical Studies

    Custom Tailored Brain Cancer Vaccine Proves Effective

    Protein NLRP12 Protects Against Colon Cancer

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Rare Hybrid Bird Discovered in Texas Backyard

    Dinner Too Spicy? Scientists Discover Natural “Anti-Spice” Compounds

    Earth’s Ancient Shield: Scientists Crack the Billion-Year-Old Mystery of the Magnetic Field

    Researchers Pinpoint Protein That May Halt the Progression of Heart Disease

    Scientists “Improve on Mother Nature” To Create Powerful Cancer-Killing Molecule

    Webb Spots Cosmic Light Show on Rogue Planet

    The Tropical Fruit That May Improve Blood Sugar and Cut Body Fat

    20-Year Dream Comes True: Chemists Grow Diamonds With an Electron Beam

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Stroke Damage Reversed As Stem Cells Regrow the Brain
    • The Pregnancy Pill Millions Trust Faces Alarming New Questions About Child Brain Health
    • Scientists Reveal That the Red Sea Completely Vanished 6.2 Million Years Ago
    • NASA Captures Stunning Images of a Titanic Iceberg’s Collapse
    • Mission Impossible? Asteroid the Size of a House Poses New Challenge for Hayabusa2
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.