Physics

Fiber Optical Tweezers: When Light Loses Symmetry, It Can Hold Particles

Mode Symmetry-Broken Mechanism Optical Trapping

Mode symmetry-broken mechanism for enhancing optical trapping behavior. Credit: Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG

Optical tweezers use light to immobilize microscopic particles as small as a single atom in 3D space. The basic principle behind optical tweezers is the momentum transfer between light and the object being hold. Much analogous to the water pushing on a dam that blocks the stream, light pushes onto objects (and also attracts them) that make the light bend. This so-called optical force can be designed to point to a certain point in space, where the particle will be held. In fact, the optical trapping technique has so far won two Nobel Prizes, one in 1997 for holding and cooling down single atoms, a second in 2018 for offering biologists with a tool to study single biomolecules such as DNA and proteins.

Researchers led by Prof. Yuanjie Pang at Huazhong University of Science and Technology (HUST), China, are interested in fiber optical tweezers, where the light and the particles are manipulated at the tip of an optical fiber. This technique eliminates the requirement of conventional, bulky, optical accessories such as microscope objectives, lenses, and mirrors.

Their idea is to start with a perfectly annular symmetric light mode that can only be transmitted in the optical fiber and will not leak into the surrounding space through the fiber tip, and have a particle to break the mode symmetry and thereby scatter light into the space. This way, by changing the symmetry and the momentum of the light, the particle receives a reactive force that holds it at the fiber tip. The researchers predict potential applications such as performing an in-vivo single bioparticle manipulating experiment by using the fiber optical tweezer as an endoscope in the interior of a living animal.

The work entitled “Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide” was featured on the cover of Frontiers of Optoelectronics.

Reference: “Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide” by Yuanhao LOU, Xiongjie NING, Bei WU and Yuanjie PANG, 15 December 2021, Frontiers of Optoelectronics.
DOI: 10.1007/s12200-021-1134-3

About Higher Education Press

Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China’s top publishers in terms of copyright export volume and the world’s top 50 largest publishing enterprises in terms of comprehensive strength.

About Frontiers of Optoelectronics

Frontiers of Optoelectronics (FOE) aims at introducing the most recent research results and the cutting edge improvements in the area of photonics and optoelectronics. It is dedicated to be an important information platform for rapid communication and exchange between researchers in the related areas. The journal publishes review articles, research articles, letters, comments, special issues, and so on. The Editors-in-Chief are Academician Qihuang Gong from Peking University and Prof. Xinliang Zhang from Huazhong University of Science and Technology. FOE has been indexed by ESCI, Ei, SCOPUS, CSCD, Source Journals for Chinese Scientific and Technical Papers and Citations, etc. FOE is fully open access since 2022.

Share

View Comments

  • ... very nice to see that some guy which nick name is MI^ is interested in very interesting physical phenomenon of "Force"...

By
Higher Education Press

Recent Posts

NASA’s Juno Spacecraft Captures Closest View of Jupiter’s Icy Moon Europa in 22 Years

Observations from the Juno spacecraft’s close pass of the icy moon provided the first close-up…

September 30, 2022

Russian Cosmonauts Undock From Space Station and Return to Earth

Yesterday, September 29, the Soyuz spacecraft undocked from the International Space Station (ISS) at 3:34…

September 30, 2022

Ancestral Heritage and Cancer: New Connection Discovered

The study also identified a new prostate cancer taxonomy. Two groundbreaking studies recently published in the…

September 30, 2022

Scientists Discover the Secret to Making Food Seem Tastier

How does color impact how you perceive food? According to recent research, a restaurant may…

September 30, 2022

Celebrate “International Observe the Moon Night 2022” With NASA

NASA invites the public to participate in the celebration of "International Observe the Moon Night"…

September 30, 2022

Increase Happiness and Reduce Stress – Researchers Recommend Replacing Social Media With This Type of Activity

The study recommends replacing social media with physical activity.  Your mental health will be greatly…

September 30, 2022