Magnetic Field Interacting With Gravity and Spin Shape Black Hole’s Environment

Magnetism Combines with Gravity to Shape Black Hole's Environment

Version 1: A spinning black hole (at center) produces a powerful jet (white-blue) along its spin axis. While near the hole, the disk rotational axis and jet direction are aligned with the black hole spin axis. Farther away the jet deviates and eventually points along the outer disk’s rotational axis. Credit: Jonathan McKinney, University of Maryland, and Ralf Kaehler, SLAC National Accelerator Laboratory

A newly published study describes how astrophysicists used simulations, which follow both the rules of general relativity and the laws of magnetism, to demonstrate that gravity isn’t the sole arbiter of a spinning black hole’s behavior.

Black holes are the ultimate Bogeyman. With a well-deserved reputation as monstrous destructive machines, black holes owe their power to huge quantities of mass that warp space and time until the gravitational force they command sucks in everything – even light. No surprise that astrophysicists have long considered gravity the dominant player in shaping the accretion disks of dust and gas surrounding black holes.

But that may not be true, at least for spinning black holes. In a paper published on November 15 in the journal Science Express, three astrophysicists focus on a different fundamental force: magnetism. In state-of-the-art simulations that follow both the rules of general relativity and the laws of magnetism, they demonstrate that gravity isn’t the sole arbiter of a spinning black hole’s behavior.


Magneto-spin alignment effect movie by Ralf Kaehler (for Science paper by McKinney, Tchekhovskoy, and Blandford 2012): The black hole spin axis, disk rotational axis, and emergent jet axis are all initially aligned. We instantly tilt the black hole spin by 90 degrees in the middle of the simulation, after which the spinning black hole (at center) reforms the powerful jet (white-blue) along the tilted black hole spin axis. The jet rams into the surrounding accretion disk (infalling hot plasma as white-red near the hole) and causes the disk to align with the black hole spin axis near the black hole. At larger distances from the black hole, the disk finally pushes back on the jet causing the jet to re-align with the outer disk rotational axis.

“We found that the black hole’s magnetic field interacting with its gravity and spin has an even bigger effect” than gravity alone, said first author Jonathan McKinney, who, before he became an assistant professor of physics at the University of Maryland, was a postdoctoral researcher at Stanford University and SLAC National Accelerator Laboratory, where he did much of the work for the paper.

Shape Black Hole's Environment

Version 2: Spinning black hole (at center) produces a powerful jet (white-blue) along its spin axis. The jet affects the orientation of the surrounding accretion disk (infalling hot plasma as white-red near the hole) causing the disk to align with the spin axis near the hole, but at larger distances the disk dominates the jet and the jet re-aligns with the outer disk. Credit: Jonathan McKinney, University of Maryland, and Ralf Kaehler, SLAC National Accelerator Laboratory

The result, especially in the case of a black hole with a thick accretion disk, is a complex maelstrom of interacting forces: Near the black hole, spiraling magnetic fields cause the material in the accretion disk to orbit about the black hole in the same direction as the black hole’s spin. Twisting lines of magnetic force launch two jets of particles in opposite directions at close to the speed of light. These jets, called relativistic jets, initially speed away parallel to the black hole’s axis of rotation – its north and south poles. But as gravity’s grip weakens, the charged gas in the outermost regions of the accretion disk pulls at the jets, pulling them away from the black hole’s rotational axis even as the jets collide with that gas and knock it away from the black hole.

McKinney says the results of the simulations have direct consequences for studies of the delicate balance between how much gas a black hole can pull in from its accretion disk and how much gas it blows away with its jets. The greedier the black hole, the more gas it pulls in and the more energy is funneled to the jets, until they become so powerful they can blast the surrounding area clear – shutting down star formation in the vicinity – and, says McKinney, “The black hole stops its own growth.”

Spinning black hole produces a powerful jet

Version 3: Spinning black hole (at center) produces a powerful jet (white smoke) along its spin axis. The jet affects the orientation of the surrounding accretion disk (infalling hot plasma as purple far from the hole and yellow near the hole) causing the disk to align with the spin axis near the hole, but at larger distances the disk dominates the jet and the jet re-aligns with the outer disk. Credit: Jonathan McKinney, University of Maryland, and Ralf Kaehler, SLAC National Accelerator Laboratory

According to their simulations, the boost in energy provided by all the forces interacting around a black hole, including the magnetic force, makes a black hole even better at blasting its surroundings clear than currently thought. “Based on our study we’re saying there are some aspects of the feedback mechanism that we don’t understand,” McKinney said, and this remains a major unsolved problem in astrophysics.

Soon, though, the work of McKinney and his colleagues, Alexander Tchekhovskoy of Princeton and Roger Blandford, director of the Kavli Institute for Particle Astrophysics and Cosmology at SLAC and Stanford, may be confirmed by actual observation. A globe-spanning array of telescopes all acting as one called the Event Horizon Telescope has been making its first close-up observations of black holes – with some help, said McKinney, from their simulations. “Any interpretations are still very preliminary,” he added, but the possibility that their ideas soon might face a direct test is exciting.

Reference: “Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes” by Jonathan C. McKinney, Alexander Tchekhovskoy and Roger D. Blandford, 15 November 2012, Science.
DOI: 10.1126/science.1230811

1 Comment on "Magnetic Field Interacting With Gravity and Spin Shape Black Hole’s Environment"

  1. “Based on our study we’re saying there are some aspects of the feedback mechanism that we don’t understand,” McKinney said, and this remains a major unsolved problem in astrophysics.”

    Nature makes magnetic fields with electricity, scientifically proven.

    Cosmologists make magnetic fields with black holes, scientifically unproven. Forget black holes, these are natural scientifically validated forces you’re observing, not unvalidated supernatural forces. Problem solved.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.