Space

Saturn’s Great Atmospheric Mystery Explained by New Data From NASA’s Cassini

Saturn South Pole Cassini

This false-color composite image shows auroras (depicted in green) above the cloud tops of Saturn’s south pole. The 65 observations used here were captured by Cassini’s visual and infrared mapping spectrometer on November 1, 2008. Credit: NASA/JPL/ASI/University of Arizona/University of Leicester

New mapping of the giant planet’s upper atmosphere reveals likely reason why it’s so hot.

The upper layers in the atmospheres of gas giants — Saturn, Jupiter, Uranus and Neptune — are hot, just like Earth’s. But unlike Earth, the Sun is too far from these outer planets to account for the high temperatures. Their heat source has been one of the great mysteries of planetary science.

New analysis of data from NASA’s Cassini spacecraft finds a viable explanation for what’s keeping the upper layers of Saturn, and possibly the other gas giants, so hot: auroras at the planet’s north and south poles. Electric currents, triggered by interactions between solar winds and charged particles from Saturn’s moons, spark the auroras and heat the upper atmosphere. (As with Earth’s northern lights, studying auroras tells scientists what’s going on in the planet’s atmosphere.)

The work, published today (April 6, 2020) in Nature Astronomy, is the most complete mapping yet of both temperature and density of a gas giant’s upper atmosphere — a region that has, in general, been poorly understood.

The aurora at Saturn’s southern pole is visible in there false-color images. Blue represents the aurora; red-orange is reflected sunlight. The image was gathered by Cassini’s ultraviolet imaging spectrograph (UVIS) on June 21, 2005. Credit: NASA/JPL/University of Colorado

By building a complete picture of how heat circulates in the atmosphere, scientists are better able to understand how auroral electric currents heat the upper layers of Saturn’s atmosphere and drive winds. The global wind system can distribute this energy, which is initially deposited near the poles toward the equatorial regions, heating them to twice the temperatures expected from the Sun’s heating alone.

“The results are vital to our general understanding of planetary upper atmospheres and are an important part of Cassini’s legacy,” said author Tommi Koskinen, a member of Cassini’s Ultraviolet Imaging Spectograph (UVIS) team. “They help address the question of why the uppermost part of the atmosphere is so hot while the rest of the atmosphere — due to the large distance from the Sun — is cold.”

Managed by NASA’s Jet Propulsion Laboratory in Southern California, Cassini was an orbiter that observed Saturn for more than 13 years before exhausting its fuel supply. The mission plunged it into the planet’s atmosphere in September 2017, in part to protect its moon Enceladus, which Cassini discovered might hold conditions suitable for life. But before its plunge, Cassini performed 22 ultra-close orbits of Saturn, a final tour called the Grand Finale.

It was during the Grand Finale that the key data was collected for the new temperature map of Saturn’s atmosphere. For six weeks, Cassini targeted several bright stars in the constellations of Orion and Canis Major as they passed behind Saturn. As the spacecraft observed the stars rise and set behind the giant planet, scientists analyzed how the starlight changed as it passed through the atmosphere.

Measuring the density of the atmosphere gave scientists the information they needed to find the temperatures. (Density decreases with altitude, and the rate of decrease depends on temperature.) They found that temperatures peak near the auroras, indicating that auroral electric currents heat the upper atmosphere.

And both density and temperature measurements together helped scientists figure out wind speeds. Understanding Saturn’s upper atmosphere, where planet meets space, is key to understanding space weather, and its impact on other planets in our solar system and exoplanets around other stars.

Reference: “A pole-to-pole pressure–temperature map of Saturn’s thermosphere from Cassini Grand Finale data” by Z. Brown, T. Koskinen, I. Müller-Wodarg, R. West, A. Jouchoux and L. Esposito, 6 April 2020, Nature Astronomy.
DOI: 10.1038/s41550-020-1060-0

The Cassini-Huygens mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. JPL, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter.

Share
By
Jet Propulsion Laboratory

Recent Posts

Anxiety Can Lead to Premature Births

The findings suggest that doctors should check for anxiety during the first and third trimesters.…

October 5, 2022

New RNA Tool Can Illuminate Brain Circuits and Edit Specific Cells

Editing technology is precise and broadly applicable to all tissues and species. Scientists at Duke…

October 5, 2022

Volcanic Super-Eruptions Are Millions of Years in the Making

While the magma supplying super-eruptions develops over long periods of time, the magma disturbs the…

October 5, 2022

Do Stars Remember Their Past? Study Sheds New Light on Old Theories of Stellar Evolution

A star's "childhood" shapes their stellar evolution.  From newborns to teenagers, stars in their "young…

October 5, 2022

Promising Anti-Cancer Drug Could Also Help With COVID

According to research conducted by Johns Hopkins Medicine, multiple variants of the SARS-CoV-2 virus can be…

October 5, 2022

Conventional Computers Can Learn To Solve Tricky Quantum Problems in Physics and Chemistry

Physicists prove that classical machine learning models can improve predictions about quantum materials. Quantum computers…

October 5, 2022