Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»The Atomic Blueprint: Algorithmic Breakthrough Unlocks Materials Path to Sustainable Technologies
    Technology

    The Atomic Blueprint: Algorithmic Breakthrough Unlocks Materials Path to Sustainable Technologies

    By University of LiverpoolJuly 9, 2023No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Algorithmic Breakthrough Fuels Quest for New Crystals
    The atomistic structure of the crystalline material garnet corresponds to the crater on the potential energy surface full of rough mountains, hills, and valleys. Finding it computationally is very hard, but by fixing a mesh on this surface, advanced algorithms and quantum computers can be used to find the lowest lying vertex. A subsequent tweak reveals the garnet structure, which comes with the optimality guarantee. Credit: University of Liverpool

    A mathematical algorithm developed by University of Liverpool researchers could signal a step change in the quest to design the new materials that are needed to meet the challenge of net zero and a sustainable future.

    New research by the University of Liverpool could signal a step change in the quest to design the new materials that are needed to meet the challenge of net zero and a sustainable future.

    Publishing in the journal Nature, the Liverpool researchers have shown that a mathematical algorithm can guarantee to predict the structure of any material just based on knowledge of the atoms that make it up.

    Developed by an interdisciplinary team of researchers from the University of Liverpool’s Departments of Chemistry and Computer Science, the algorithm systematically evaluates entire sets of possible structures at once, rather than considering them one at a time, to accelerate the identification of the correct solution.

    Identifying and Predicting New Materials

    This breakthrough makes it possible to identify those materials that can be made and, in many cases, to predict their properties. The new method was demonstrated on quantum computers that have the potential to solve many problems faster than classical computers and can therefore speed up the calculations even further.

    Our way of life depends on materials – “everything is made of something”. New materials are needed to meet the challenge of net zero, from batteries and solar absorbers for clean power to providing low-energy computing and the catalysts that will make the clean polymers and chemicals for our sustainable future.

    This search is slow and difficult because there are so many ways that atoms could be combined to make materials, and in particular so many structures that could form. In addition, materials with transformative properties are likely to have structures that are different from those that are known today, and predicting a structure that nothing is known about is a tremendous scientific challenge.

    Professor Matt Rosseinsky, from the University’s Department of Chemistry and Materials Innovation Factory, said: “Having certainty in the prediction of crystal structures now offers the opportunity to identify from the whole of the space of chemistry exactly which materials can be synthesized and the structures that they will adopt, giving us for the first time the ability to define the platform for future technologies.

    “With this new tool, we will be able to define how to use those chemical elements that are widely available and begin to create materials to replace those based on scarce or toxic elements, as well as to find materials that outperform those we rely on today, meeting the future challenges of a sustainable society.”

    Harnessing Algorithmic Power for Discovery

    Professor Paul Spirakis, from the University’s Department of Computer Science, said: “We managed to provide a general algorithm for crystal structure prediction that can be applied to a diversity of structures. Coupling local minimization to integer programming allowed us to explore the unknown atomic positions in the continuous space using strong optimization methods in a discrete space.

    Our aim is to explore and use more algorithmic ideas in the nice adventure of discovering new and useful materials. Joining efforts of chemists and computer scientists was the key to this success.”

    The paper “Optimality Guarantees for Crystal Structure Prediction” was published on July 5 in the journal Nature.

    Reference: “Optimality guarantees for crystal structure prediction” by Vladimir V. Gusev, Duncan Adamson, Argyrios Deligkas, Dmytro Antypov, Christopher M. Collins, Piotr Krysta, Igor Potapov, George R. Darling, Matthew S. Dyer, Paul Spirakis and Matthew J. Rosseinsky, 5 July 2023, Nature.
    DOI: 10.1038/s41586-023-06071-y

    The research team includes researchers from the University of Liverpool’s Departments of Computer Science and Chemistry, the Materials Innovation Factory and the Leverhulme Research Centre for Functional Materials Design, which was established to develop new approaches to the design of functional materials at the atomic scale through interdisciplinary research.

    This project has received funding from the Leverhulme Trust and the Royal Society.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Atomic Physics Materials Science Popular University of Liverpool
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Main Attraction: Scientists Create World’s Thinnest Magnet – Just One Atom Thick!

    Cutting Through Noise to Improve Solar Cell Efficiency

    Engineers Show Feasibility of Organic Topological Insulators

    Controlled Graphene Crumpling Used as Artificial Muscle Actuators

    Nanoscale Coating Repels Virtually Any Liquid

    Liquid Metal Used in Ultra-Stretchable Conducting Wires

    Duke University Creates “Perfect” Microwave Cloak

    Nanosheet-Flower Structure Boosts Energy Storage

    Spray Paint Battery Can be Painted on Virtually Any Surface

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Cornell Scientists Unlock the Secret to Age-Defying Weight Control

    Rewriting Chemical Rules: Researchers Accidentally Create Unprecedented New Gold Compound

    “A Bad Day at Sea”: Researchers Reveal How Rogue Waves Really Form

    Webb Telescope Spots Sparkling Crystals and Life’s Ingredients in the Butterfly Nebula

    Scientists Develop 4-in-1 Drug for Weight Loss With Fewer Side Effects

    Omega-3 Deficiency May Explain Why Alzheimer’s Hits Women Harder

    The Secret Science That Could Change Chocolate Forever

    “Heavy” Electrons Hold the Key to a New Type of Quantum Computer

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Scientists Find Kidney-Saving microRNA in a World-First Discovery
    • Why Do We Need Sleep? Oxford Scientists Trace the Answer to Mitochondria
    • Weight Loss Breakthrough: Scientists Develop Edible “Fat Sponges” From Green Tea and Seaweed
    • New Research Shows Mars Is Far Icier Than We Thought
    • MIT Scientists May Have Finally Solved the Moon’s Magnetic Mystery
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.