Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»SOFIA Explores Supergalactic Wind, Provides Clues to Evolution of Galaxies
    Space

    SOFIA Explores Supergalactic Wind, Provides Clues to Evolution of Galaxies

    By Kassandra Bell and Arielle Moullet, USRA SOFIA Science CenterMarch 5, 2019No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Weighing Galactic Wind Provides Clues to Evolution of Galaxies
    Composite image of the Cigar Galaxy (also called M82), a starburst galaxy about 12 million light-years away in the constellation Ursa Major. The magnetic field detected by SOFIA, shown as streamlines, appears to follow the bipolar outflows (red) generated by the intense nuclear starburst. The image combines visible starlight (gray) and a tracing of hydrogen gas (red) from the Kitt Peak Observatory, with near-infrared and mid-infrared starlight and dust (yellow) from SOFIA and the Spitzer Space Telescope. Credit: NASA/SOFIA/E. Lopez-Rodriguez; NASA/Spitzer/J. Moustakas et al.

    The Cigar Galaxy (M82) is famous for its extraordinary speed in making new stars, with stars being born 10 times faster than in the Milky Way. Now, data from the Stratospheric Observatory for Infrared Astronomy, SOFIA, have been used to study this galaxy in further detail, revealing how the material that affects the evolution of galaxies may get into intergalactic space.

    Researchers found, for the first time, that the galactic wind flowing from the center of the Cigar Galaxy (M82) is aligned along a magnetic field and transports a very large mass of gas and dust — the equivalent mass of 50 to 60 million Suns.

    “The space between galaxies is not empty,” said Enrique Lopez-Rodriguez, a Universities Space Research Association scientist working on the SOFIA team. “It contains gas and dust — which are the seed materials for stars and galaxies. Now, we have a better understanding of how this matter escaped from inside galaxies over time.”

    Besides being a classic example of a starburst galaxy, which means it is forming an extraordinary number of new stars compared with most other galaxies, M82 also has strong winds blowing gas and dust into intergalactic space. Astronomers have long theorized that these winds would also drag the galaxy’s magnetic field in the same direction, but despite numerous studies, there has been no observational proof of the concept.

    Researchers using the airborne observatory SOFIA found definitively that the wind from the Cigar Galaxy not only transports a huge amount of gas and dust into the intergalactic medium, but also drags the magnetic field so it is perpendicular to the galactic disc. In fact, the wind drags the magnetic field more than 2,000 light-years across — close to the width of the wind itself.

    “One of the main objectives of this research was to evaluate how efficiently the galactic wind can drag along the magnetic field,” said Lopez-Rodriguez. “We did not expect to find the magnetic field to be aligned with the wind over such a large area.”

    These observations indicate that the powerful winds associated with the starburst phenomenon could be one of the mechanisms responsible for seeding material and injecting a magnetic field into the nearby intergalactic medium. If similar processes took place in the early universe, they would have affected the fundamental evolution of the first galaxies.

    The results were published in January 2019 in the Astrophysical Journal Letters.

    SOFIA’s newest instrument, the High-resolution Airborne Wideband Camera-Plus, or HAWC+, uses far-infrared light to observe celestial dust grains, which align along magnetic field lines. From these results, astronomers can infer the shape and direction of the otherwise invisible magnetic field. Far-infrared light provides key information about magnetic fields because the signal is clean and not contaminated by emission from other physical mechanisms, such as scattered visible light.

    “Studying intergalactic magnetic fields — and learning how they evolve — is key to understanding how galaxies evolved over the history of the universe,” said Terry Jones, professor emeritus at the University of Minnesota, in Minneapolis, and lead researcher for this study. “With SOFIA’s HAWC+ instrument, we now have a new perspective on these magnetic fields.”

    Reference: Terry Jay Jones, et al., “SOFIA Far-infrared Imaging Polarimetry of M82 and NGC 253: Exploring the Supergalactic Wind” by Terry Jay Jones, C. Darren Dowell, Enrique Lopez Rodriguez, Ellen G. Zweibel, Marc Berthoud, David T. Chuss, Paul F. Goldsmith, Ryan T. Hamilton, Shaul Hanany, Doyal A. Harper, Alex Lazarian, Leslie W. Looney, Joseph M. Michai, Mark R. Morris, Giles Novak, Fabio P. Santos, Kartik Sheth, Gordon J. Stacey, Johannes Staguhn, Ian W. Stephens, Konstantinos Tassis, Christopher Q. Trinh, C. G. Volpert, Michael Werner and Edward J. Wollack, 4 January 2019, The Astrophysical Journal Letters.
    DOI: 10.3847/2041-8213/aaf8b9

    The HAWC+ instrument was developed and delivered to NASA by a multi-institution team led by the Jet Propulsion Laboratory (JPL). JPL scientist and HAWC+ Principal Investigator Darren Dowell, along with JPL scientist Paul Goldsmith, were part of the research team using HAWC+ to study the Cigar Galaxy.

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Hangar 703, in Palmdale, California.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Astronomy Astrophysics Cosmology SOFIA
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    SOFIA Observations Reveal Possible Key to Black Hole Activity

    SOFIA Helps Unravel Mysteries of Star-Forming Regions in Our Galaxy

    Astronomers Reveal Scientific Results from NASA’s SOFIA Airborne Telescope

    NASA’s SOFIA Set To Study New Frontiers in the Solar System and Beyond

    Iris Nebula Offers Clues to the Building Blocks of Life

    Lyman-Alpha Blobs are Some of the Largest Individual Objects in the Observable Universe

    Links Between Core Collapse Supernovae and Star Formation Established

    The Bolshoi Simulation: Boxing the Universe

    Baryon Oscillation Spectroscopic Survey Measures the Universe’s Expansion and Dark Energy

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    It’s Snowing Salt. The Strange Phenomenon Happening Deep in the Dead Sea

    Stanford Scientists Successfully Reverse Autism Symptoms in Mice

    Scientists Finally Solve the Mystery of the Sun’s Fastest Particles

    Don’t Throw Away Those Cannabis Leaves – They’re Packed With Rare Compounds

    Why Cancer Spreads: Scientists Uncover a New Clue Inside the Cell’s Power Plant

    These Glow-in-the-Dark Succulents Could Replace Your Night Light

    Mezcal Worm in a Bottle Yields Surprising DNA Results

    The Math Says Life Shouldn’t Exist: New Study Challenges Origins Theories

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • If Aliens Are Looking for Us, This Is How They’d Find Us
    • “Alien Aurora” – Scientists Spot Never-Before-Seen Plasma Waves in Jupiter’s Polar Lights
    • 50-Million-Year-Old Sea Turtle Unearthed in Syria Stuns Paleontologists
    • 41,000 Years Ago, Something Weird in Space Changed How Humans Lived on Earth
    • $1 Billion Saved Each Year? Scientists Question Adult Booster Shots
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.