Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Physics»New Semiconductor Nanostructure for Efficient Quantum Electronics
    Physics

    New Semiconductor Nanostructure for Efficient Quantum Electronics

    By Ehime UniversityOctober 19, 20191 Comment4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Unusual Nanostructures
    Microscopic observations of obtained nanowires. Characteristic hexagonal star structure, defect-defined quantum structures induced by the existence of Bi element were observed. Credit: Ehime University

    Peculiar Bi provoked nanostructures in compound semiconductor nanowires controlled by atomically precise epitaxial crystal growth.

    Nanowire is a rod-structure with a diameter typically narrower than several hundred nanometers. Due to its size and structure, it exhibits characteristic properties which are not found in larger bulk materials. The study of III-V semiconductor nanowires has attracted much interest in recent decades due to their potential application in nanoscale quantum, photonic, electronic, and energy conversion, and in biological devices, based on their one-dimensional nature and large surface-to-volume ratio. The introduction of an epitaxial heterostructure facilitates control of the transport and electronic properties of such devices, showing the potential for realizing integrated systems based on III-V compounds and Si with superior electronic and optical functions.

    III-V compound semiconductors are one of the highest in mobility and photon-electron conversion efficiency in existence. Among them, GaAs is a representative III-V compound semiconductor, which is utilized for high-speed transistors, as well as high-efficiency near-infrared light-emitting diodes, lasers, and solar cells. Optical devices based on III-V GaAs suffer from intrinsic losses related to heat generation. To circumvent this, the use of dilute bismide GaAsBi alloy with a nontoxic Bi element has recently gained attention because the introduction of Bi suppresses heat generation while increasing electron-light conversion efficiency. Therefore, incorporating dilute bismide GaAsBi alloy into nanowires is a rational approach for developing high-performance optoelectronic nanodevices. Meanwhile, branched or tree-like nanowires offer an approach to increase structural complexity and enhance the resulting functions which in turn enable the realization of higher dimensionality structures, lateral connectivity, and interconnection between the nanowires.

    Using an atomically precise crystal growth technique called molecular beam epitaxy, the Ehime University group controlled the formation of Bi-induced nanostructures in the growth of branched GaAs/GaAsBi core-shell nanowires. Thus, they paved a way to achieve unexplored III-V semiconductor nanostructures employing the characteristic supersaturation of catalyst droplets, structural modifications induced by strain, and incorporation into the host GaAs matrix correlated with crystalline defects and orientations.

    The scientific article that presents their results were published on September 17, 2019, in the journal Nano Letters.

    The group had previously obtained GaAs/GaAsBi heterostructure nanowires on Si with a 2% smaller Bi concentration than the previous report. The nanowires exhibited specific structural features, having a rough surface with corrugations, which were probably induced by the large lattice mismatch and resulting strain accumulation between the GaAs and GaAsBi alloy. Also, Bi acts as a surfactant in controlling the surface energy, thus provoking the synthesis of nanostructures. However, the impact of Bi introduction on the GaAsBi alloy growth is far from being comprehensively understood.

    In the report, they investigate the features and growth mechanisms of GaAs/GaAsBi core-shell multi-layered NWs on Si (111) substrates, focusing on the structural deformation induced by Bi. To synthesize branched III-V nanowires, conventionally, metallic catalyst nanoparticles, most commonly Au, are employed as the nucleation seeds for the growth of the branches. On the other hand, the group used self-catalyst Ga and Bi droplets which can suppress the impurity introduction of non-constituent elements. When Ga is deficient during growth, Bi accumulates on the vertex of core GaAs nanowires and serves as a nanowire growth catalyst for the branched structures to specific crystalline azimuth. There is a strong correlation between Bi accumulation and stacking faults. Furthermore, Bi is preferentially incorporated on a restricted GaAs surface orientation, leading to spatially selective Bi incorporation into a confined area that has a Bi concentration 7% over the fundamental limit. The obtained GaAs/GaAsBi/GaAs heterostructure with the interface defined by the crystalline twin defects of one atomic layer, which can be potentially applied to a quantum confined structure.

    The finding provides a rational design concept for the creation of GaAsBi based nanostructures and the control of Bi incorporation beyond the fundamental limit. These results indicate the potential for a novel semiconductor nanostructure for efficient near-infrared devices and quantum electronics.

    Reference: “Controlling Bi-Provoked Nanostructure Formation in GaAs/GaAsBi Core–Shell Nanowires” by Teruyoshi Matsuda, Kyohei Takada, Kohsuke Yano, Rikuo Tsutsumi, Kohei Yoshikawa, Satoshi Shimomura, Yumiko Shimizu, Kazuki Nagashima, Takeshi Yanagida and Fumimaro Ishikawa, 17 September 2019, Nano Letters.
    DOI: 10.1021/acs.nanolett.9b02932

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Ehime University Nanotechnology Nanowires Quantum Materials
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    First-Ever Images Capture Atoms “Wiggling” in Quantum Materials

    Cambridge Physicists Pioneer Atomically-Thin Quantum Magnetic Sensors

    The Strange Secret Behind These Semiconductors That Seemingly Defy Physics

    Physicists Just Made a Century-Old Quantum Theory a Reality

    Quantum Breakthrough As MIT Achieves Unprecedented Atomic Proximity

    Quantum Leap in Ultrafast Electronics Secured by Graphene’s Atomic Armor

    Scientists Use Light To Trigger Magnetism in Nonmagnetic Material

    Scientists Achieve New Quantum Teleportation Record

    Two-Dimensional Polymers Created for the First Time

    1 Comment

    1. Arifmalik on October 19, 2019 2:01 pm

      Stunning

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could a Simple Vitamin Reverse the World’s Most Common Liver Disease?

    NASA Perseverance Rover’s Stunning Find May Be Mars’ First Sign of Life

    The U.S. Is Sitting on a Goldmine of Critical Minerals – but They’re Being Thrown Away

    The Salmon Superfood You’ve Never Heard Of

    New Smart Pimple Patch Clears Acne in Just 7 Days

    Something From Nothing – Physicists Mimic the “Impossible” Schwinger Effect

    Worse Than We Thought: “Forever Chemicals” Are Far More Acidic Than Previously Believed

    Scientists Find a Way to Stop Breast Cancer From Coming Back

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • “Rogue” DNA Rings Expose Brain Cancer’s Earliest Secrets
    • 40-Year Medical Mystery Solved: Why Smoking Helps Ulcerative Colitis
    • New Breath Test Detects Diabetes in Minutes
    • A 30-Year Study Reveals a Hidden Climate Driver Heating Antarctica’s Core
    • Life on Earth May Be Thanks to a Lucky Planetary Collision
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.